N27 – Gases

Gas Density and More

N27 – Gases Gas Density and More

Target: I can describe and perform calculations for a hodgepodge of gas topics (gas density, kinetic energy, effusion/ diffusion and gas stoichiometry).

Gas Density

$Density = \frac{mass}{volume} = \frac{molar mass}{molar volume}$

... so at STP...

$$Density = \frac{\text{molar mass}}{22.4 \text{ L}}$$

Density and the Ideal Gas Law

Combining the formula for density with the Ideal Gas law, substituting and rearranging algebraically:

DRT

- **D** = Density
- **M** = Molar Mass
- **P** = Pressure
- **R** = Gas Constant
- **T** = Temperature in Kelvins

"Molar Mass Kitty puts Dirt Over its Pee" - Ha!

Kinetic Energy of Gas Particles

At the same conditions of temperature, all gases have the same <u>average</u> kinetic energy.

$$KE = \frac{1}{2}mv^2$$

The Meaning of Temperature

Kelvin temperature is an index of the random motions of gas particles (higher *T* means greater motion.)

$$(KE)_{avg} = \frac{3}{2}RT$$

Root Mean Square Velocity

R = universal gas constant (the energy one, 8.314)

T = Kelvin Temperature

M = molar mass in <u>*KILOGRAMS*</u> (b/c of the Joule in "R")

Diffusion

Diffusion describes the mixing of gases.

The rate of diffusion is the rate of gas mixing.

Effusion

Effusion describes the passage of gas into an evacuated chamber.

Diffusion versus Effusion

Diffusion

Effusion

<u>Graham's Law</u>

Rate of Effusion:

 $\frac{Rate \ of \ effusion \ for \ gas \ 1}{Rate \ of \ effusion \ for \ gas \ 2} = \frac{\sqrt{M_2}}{\sqrt{M_1}}$

Rate of Diffusion:

Distance traveled by gas 1 $_{-1}$

Distance traveled by gas 2

M = molar mass

 M_2

 M_1

Often given seconds it takes the gases to travel versus distance. No big deal! Use that data.

If they tell you gas 1 travels 4 times faster, that is this part of the equation:

Rate gas 1

Rate gas 2

Careful to notice it isn't gas 1 on the top of both parts of the equation!

Practice

Under the same conditions of temperature and pressure, does hydrogen iodide or ammonia effuse faster? Calculate the relative rates at which they effuse.

$$\frac{Rate \ of \ effusion \ for \ gas \ 1}{Rate \ of \ effusion \ for \ gas \ 2} = \frac{\sqrt{M_2}}{\sqrt{M_1}}$$

$$\frac{Rate\ of\ NH_3}{Rate\ of\ HI} = \frac{\sqrt{HI}}{\sqrt{NH_3}} = \frac{\sqrt{127}}{\sqrt{17}} = 2.74$$

Practice

Under the same conditions of temperature and pressure, does hydrogen iodide or ammonia effuse faster? Calculate the relative rates at which they effuse.

$$\frac{Rate \ of \ effusion \ for \ gas \ 1}{Rate \ of \ effusion \ for \ gas \ 2} = \frac{\sqrt{M_2}}{\sqrt{M_1}}$$

$$\frac{Rate \ of \ NH_3}{Rate \ of \ HI} = \frac{\sqrt{HI}}{\sqrt{NH_3}} = \frac{\sqrt{127}}{\sqrt{17}} = 2.74$$

$$\frac{NH_3}{\sqrt{17}} = \frac{1}{\sqrt{17}} = 1.74$$

NH₃ effuses 2.74 times faster than HI

Sometimes Some Strange Scenarios

Identify that the story is about how far gases travel – Graham's Law problem!

Real Gases

Must correct ideal gas behavior when at high pressure (smaller volume) and low temperature (attractive forces become important).

$$\left(P_{observed} + a\left(\frac{n}{V}\right)^2\right) \mathbf{x} \left(V - nb\right) = nRT$$

corrected pressure

Compared to P_{ideal}

Attractive forces in a real gas = less collisions

corrected volume Compared to V_{ideal}

Real gases take up some volume since they are not "point particles"

Gas Stoichiometry

If reactants and products are at the same conditions of temperature and pressure, then mole ratios of <u>gases</u> are also **volume ratios**.

How many liters of ammonia can be produced when 12 liters of hydrogen react with an excess of nitrogen?

$$3 H_2(g) + N_2(g) \rightarrow 2NH_3(g)$$

$$12 \stackrel{1}{\leftarrow} H_2 2 \stackrel{1}{\leftarrow} NH_3 = 8.0 \stackrel{1}{\leftarrow} NH_3$$

How many liters of oxygen gas, at STP, can be collected from the complete decomposition of 50.0 grams of potassium chlorate?

 $2 \text{ KClO}_3(s) \rightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$

How many liters of O_2 , at 37.0°C and 0.930 atm, can be collected from the decomposition of 50.0 g of KClO₃?

 $2 \text{ KClO}_3(s) \rightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$

$$\frac{50.0 \text{ g} \text{ KClO}_3}{1 \text{ mot KClO}_3} \frac{1 \text{ mot KClO}_3}{1 \text{ 2 mot KClO}_3} \frac{3 \text{ mol O}_2}{2 \text{ mot KClO}_3} = \text{"n" mol O}_2} = \text{"n" mol O}_2$$

$$V = \frac{nRT}{P} = \frac{(0.612 \text{ mol}) \left(0.0821 \frac{L \text{ atm}}{K \text{ mol}} \right) (310 \text{ K})}{0.930 \text{ atm}} = 16.7 \text{ L}$$

YouTube Link to Presentation:

https://youtu.be/bE5TiE4bDsQ