Dougherty Valley HS Chemistry - AP Gas Laws – Graham's Law of Effusion Intro

Worksheet #7

Name:

Period:

Seat#:

Effus	sion	
Rate of Effusion of Gas 1	$=\frac{\sqrt{M_2}}{\sqrt{M_1}}; M = Molar mass$	
Rate of Effusion of Gas 2	$=\frac{1}{\sqrt{M_1}}; M = Motur mass$	
Diffusion		
Distance traveled of Gas 1	$r = \frac{\sqrt{M_2}}{\sqrt{M_1}}; M = Molar mass$	
Distance traveled of Gas 2	$=\frac{1}{\sqrt{M_1}}$; $M=Motur mass$	

Directions:

Solve the following problems. Assume all number are 3 significant figures. Remember to show your work!

1)	Under the same conditions of temperature and pressure, how many times faster will hydrogen effuse compared to carbon dioxide? <u>4.69 times faster</u>
2)	If the carbon dioxide in Problem 1 takes 32 sec to effuse, how long will the hydrogen take? <u>6.8 sec</u>
3)	What is the relative rate of diffusion of NH ₃ compared to He? Does NH ₃ effuse faster or slower than He? <u>0.485</u> <u>times</u>
4)	If the He in Problem 3 takes 20 sec to effuse, how long will the NH₃ take? <u>40 sec</u>
5)	An unknown gas diffuses 0.25 times as fast as He. What is the molecular mass of the unknown gas? 64 g/mol
6)	Find the molar mass of a gas that diffuses about 4.45 times faster than argon gas. 2.01 g/mol