Name: Date: Period: Seat #:

- [1] Describe the interparticle forces at work in the following:
 - a. within a water molecule H₂O
 - b. in a crystal of the salt NaCl
 - c. in a solution of potassium nitrate KNO₃
 - d. in diamond
 - e. in a fiber of nylon
 - f. in liquid butane
 - g. between water molecules in ice
 - h. between the two strands in the double helix of DNA
 - i. in paraffin wax
 - j. between the molecules of carbon dioxide CO2 in dry ice
 - k. between the molecules of HCl in liquid HCl
 - 1. in tungsten metal
 - m. in a solution of perchloric acid
- [2] Which one of the following pairs of molecules would you expect to have the higher melting point?
 - a. Cl2 or Br2
 - b. C₄H₁₀ or C₅H₁₂
 - c. NH₃ or PH₃
 - d. Na or Mg
 - e. BeO or KCl
 - f. ICl or Br2
- [3] Which states or types of matter would be characterized by each of the following statements?
 - a. High individual molecular speeds.
 - b. A melting point spread over a wide temperature range.
 - c. A regular repeating array of structural units.
 - d. Molecules move with respect to one another but are held together in a condensed state.
 - e. Molecules close together but having sufficiently high kinetic energies to overcome the intermolecular forces.
 - f. Valence electrons delocalized over huge arrays of atoms.
 - g. Totally random molecular order with comparatively great distances between individual molecules.
 - h. A three-dimensional network of covalent bonds.
- [4] Acetone (C₃H₆O) and chloroform (CHCl₃) form an unusually strong intermolecular bond. Why is this? Draw a picture of how the molecules attract each other.
- [5] Complete the following calculations:
 - a. How much heat is required to melt 15 grams of ice at 0°C?
 - b. How much heat is released when 100 grams of steam condenses at 100°C?
 - c. If a system of ice and water has a mass of 12 grams, and it is converted completely to water at 0.0°C by supplying 1.33 kJ of heat, how much water was initially present?

Heat of fusion of ice = 333 J/g Heat of vaporization of water = 2250 J/g