
(remember, 1 cal = 4.184J)

Name:	Period:	Seat#:
Name.	renou.	Jeai#.

1)	Label each of the blank rectangle boxes on the graph above with one of the following terms. Terms can be used more than once. • Warming • Melting • Vaporizing	Which equation do you use for each of the following sections? • Warming → q = • Melting → q = • Vaporizing → q =			
2)	What are the following values for water? Include both J/g and kJ/mol answers. J/g kJ/mol H _{fus} = H _{vap} =	Δ Kinetic Energy Δ Potential Energy Line 1			
4)	How many calories are needed to convert 312.0g of ice	at -35°C to liquid to water at 25.0°C 38200 cal			

Dougherty Valley HS Chemistry - AP IMFs – Heating Curve Practice

5)	How many joules (J) of energy are released when 6.80E3	g of steam at 100.0°C are completely frozen to ice at
	0.0°C ? <u>2.05 x 10⁷J</u>	

6) How much energy (in J) is required to completely melt 205.0 mol of ice at 0.0°C? 1.235 x 10° J

7) Using the information in the chart below, how much heat is needed to raise the temperature of 85g of potassium from 25°C to 2,500°C ? 3.41 x 10⁵ J

Substance	$ \begin{pmatrix} C \text{ (solid)} \\ \left(\frac{J}{g \cdot K}\right) \end{pmatrix} $	M.P. (°C)	$\Delta \mathbf{H}_{\mathbf{fus}}$ $\left(\frac{J}{g}\right)$	C (liquid) $\left(\frac{J}{g \cdot K}\right)$	B.P. (°C)	$\Delta \mathbf{H}_{\mathbf{vap}} = \left(\frac{J}{g}\right)$	$ \begin{pmatrix} \mathbf{C} & (\mathbf{gas}) \\ \left(\frac{J}{g \cdot K}\right) \end{pmatrix} $
K	0.560	62	61.4	1.070	760	2025	0.671