N31 - SOLUTIONS

Target: I can convert between different concentration units and can use concentration calculations to find helpful information like how many moles are present.

N31 - SOLUTIONS

Concentration

<u>Solute</u>

A solute is the dissolved substance in a solution.

Salt in salt water

Sugar in soda drinks

Carbon dioxide in soda drinks

Solvent A solvent is the dissolving medium in a solution.

Water in salt water

Water in soda

Types of Solutions

Solution Phase	Solute Phase	Solvent Phase	Example
Gaseous Solutions	Gas Liquid <i>Solid*</i>	Gas Gas <i>Gas*</i>	Air (mostly N_2 and O_2) Humid air (H_2O droplets in air) <i>Moth balls</i> *
Liquid solutions	Gas Liquid Solid	Liquid Liquid Liquid	Soda (CO ₂ in H ₂ O) Rubbing Alcohol (alcohol in H ₂ O) Seawater (NaCl in H ₂ O)
Solid solutions	<i>Ga</i> s* Liquid Solid	<i>Solid*</i> Solid Solid	Gas Stove Lighter (H ₂ and Pd)* Dental fillings and other Amalgams Brass Alloy (Zn in Cu)

Combinations in italics and with a * are rare, very few "normal" examples. Most charts leave them off because there are so few examples – they are still possible, just rare

Molarity

Moles of solute per 1 liter of solution - Describes how many molecules of solute in each liter of solution

If a sugar solution concentration is 2.0 M,

- -1 liter of solution contains 2.0 moles of sugar
- -2 liters = 4.0 moles sugar
- -0.5 liters = 1.0 mole sugar

 $Molarity, M = \frac{moles \ of \ solute}{Liters \ of \ solution}$

Molality

Moles of solute per 1 kilogram of solvent

Careful! Defined in terms of amount of <u>solvent</u>, not the <u>solution</u> like most of the other calculations

Does not vary with temperature

-Because based on masses, not volumes

$$Molality, m = \frac{moles \ of \ solute}{kg \ of \ solvent}$$

Parts Solute in Parts Solution

Parts can be measured by mass or volume.

Parts are generally measured in the same units.

- -By mass in grams, kilogram, lbs, etc.
- -By volume in mL, L, gallons, etc.
- -Mass and volume combined in grams and mL

Parts Solute in Parts Solution

Percentage = parts of solute in every 100 parts solution

 If a solution is 0.9% by mass, then there are 0.9 grams of solute in every 100 grams of solution (or 0.9 kg solute in every 100 kg solution).

Parts per million = parts of solute in every 1 million parts solution

 If a solution is 36 ppm by volume, then there are 36 mL of solute in 1 million mL of solution.

Mass Percent

Mass percent - the ratio of mass units of solute to mass units of solution, expressed

$$mass \, percent = \frac{mass \, of \, solute}{mass \, of \, solution} x100$$

Parts per Million - PPM

Grams of solute per 1,000,000 g of solution

- mg of solute per 1 kg of solution
- 1 liter of water = 1 kg of water

For aqueous solutions we often approximate the kg of the solution as the kg or L of water. For dilute solutions, the difference in density between the solution and pure water is usually negligible.

$$PPM = \frac{amount \, of \, solute}{amount \, of \, solution} x10^6$$

Remember that the density of water is 1g/1mL Same as 1000g/1L Same as 1kg/1L

Parts per Billion - PPB

$$PPB = \frac{amount \, of \, solute}{amount \, of \, solution} x10^9$$

$$Parts \ per \ \dots = \ \frac{amount \ of \ solute \ (PART)}{amount \ of \ solution \ (WHOLE)} \ x \ some \ factor$$

$$\% = x \ 100$$

$$ppm = x \ 1,000,000 = x10^{6}$$

$$ppb = x1,000,000 = x10^{9}$$

<u>Mole Fraction</u> X_A

Mole fraction - the fraction of the moles of one component in the total moles of all the components of the solution.

- Total of all the mole fractions in a solution = 1.
- -No units

$$X_A = \frac{n_A}{n_A + nB + \cdots}$$

Mole percentage - the percentage of the moles of one component in the total moles of all the components of the solution.

= mole fraction × 100%

$$X_A = \frac{n_A}{n_A + nB + \cdots} x \ \mathbf{100}$$

Making Dilutions

When you take one more concentrated solution and take a small amount of it and dilute it down by adding more solvent.

$$M_1V_1 = M_2V_2$$

Very accurate marking for a specific volume. You can fill the flask with your strong V1 amount and then fill to the line to get the desired solution volume.

Converting Concentration Units

- 1. WRITE YOUR UNITS. SERIOUSLY.
- 2. Write the given concentration as a ratio.
- 3. Separate the numerator and denominator.
 - Think about each separately
 - Separate into the solute part and solution part
- 4. Convert the solute part into the required unit.
- 5. Convert the solution part into the required unit.
- 6. Use the definitions to calculate the new final concentration units.

Practice

How much of a 2.3 M solution do you have to use in order to make 750mL of a 0.6 M solution?

Find the mass percent of $CuSO_4$ in a solution whose density is 1.30 g/ml and whose molarity is 4.73 M.

Find the mass percent of $CuSO_4$ in a solution whose density is 1.30 g/ml and whose molarity is 4.73 M.

A	41.9%	1 L s	olutio	on =	= $4.73 \text{ mol } \text{CuSO}_4$				
		4.73		3mol	mol 159		= 7	755g	
В	B 6.15%			1mc		ol	solute		
C	58.1%	8.1% 1		1000mL		1.30g		= 1300g	
D	6.03%					1m	L	solution	
E	None of thes	Se	1	755g 300g	x 10	0 = <mark>5</mark>	8.15	5%	

What is the mole percent of ethanol (C_2H_5OH), which consists of 71.0 g of ethanol for every 14.3 g of water present?

$$X_A = \frac{n_A}{n_A + nB + \cdots} x \ \mathbf{100}$$

What is the mole percent of ethanol (C_2H_5OH), which consists of 71.0 g of ethanol for every 14.3 g of water present?

	CC 00/		71.0g	Imol	=	1.54 mol
A	00.070			46.08	g	ethanol
B	1.94%		14.3g	1mol	_ =	0.794 mol
C	1.52%			18.02ថ្	3	water
D	83.2%	1	.54mol	>	< 100	= 65.99%
E	34.0%	(1.54m	nol + 0.794	4mol)		

What is the molality of solution of 33.5 g propanol (CH₃CH₂CH₂OH) in 152 ml water, if the density of water is 1.00 g/ml?

B

0.273 m

None of these

What is the molality of solution of 33.5 g propanol (CH₃CH₂CH₂OH) in 152 ml water, if the density of water is 1.00 g/ml?

A 3.67 m	33.5g	1mol	= 0.557 mol				
B 0.00367 m		60.11g	solute				
C 0.273 m		7.00 0 1					
D 0.557 m	0.557 mol = 3.67 m 0.152kg						
E None of these							

A solution containing 481.6 g of $Mg(NO_3)_2$ per liter has a density of 1.114 g/ml. The molarity of the solution is:

A solution containing 481.6 g of $Mg(NO_3)_2$ per liter has a density of 1.114 g/ml. The molarity of the solution is:

2.915 M

9.740 M

3.617 M

None of these

A) 3.247 M 1mol 481.6g = 3.247 mol solute 148.33<u>g</u>

= 3.247 mol/1L = 3.247 M

*Density was just extra info! Very common in solutions problems to have more info than you need.

Link to YouTube Presentation

https://youtu.be/op8vqy3uxq8