Properties of Solutions

Solute

A solute is the dissolved substance in a solution.

Salt in salt water Sugar in soda drinks

Carbon dioxide in soda drinks

A solvent is the dissolving medium in a solution.

Water in salt water Water in soda

Solution Concentration: Molarity

- Moles of solute per 1 liter of solution
- Describes how many molecules of solute in each liter of solution
- If a sugar solution concentration is 2.0 M,
 - 1 liter of solution contains 2.0 moles of sugar
 - 2 liters = 4.0 moles sugar
 - 0.5 liters = 1.0 mole sugar

Molarity, $M = \frac{\text{moles of solute}}{\text{Liters of solution}}$

Solution Concentration: Molality, m

- Moles of solute per 1 kilogram of solvent
 - Defined in terms of amount of solvent, not solution
 - Like the others
- Does not vary with temperature
 - Because based on masses, not volumes

molality, $m = \frac{\text{moles of solute}}{\text{kg of solvent}}$

Parts Solute in Parts Solution

• Parts can be measured by mass or volume.

- Parts are generally measured in the same units.
 - By mass in grams, kilogram, lbs, etc.
 - By volume in mL, L, gallons, etc.
 - Mass and volume combined in grams and mL

Parts Solute in Parts Solution

- Percentage = parts of solute in every 100 parts solution
 - If a solution is 0.9% by mass, then there are 0.9 grams of solute in every 100 grams of solution (or 0.9 kg solute in every 100 kg solution).
- Parts per million = parts of solute in every 1 million parts solution
 - If a solution is 36 ppm by volume, then there are 36 mL of solute in 1 million mL of solution.

PPM

- Grams of solute per 1,000,000 g of solution
- mg of solute per 1 kg of solution
- 1 liter of water = 1 kg of water
 - For aqueous solutions we often approximate the kg of the solution as the kg or L of water.
 - For dilute solutions, the difference in density between the solution and pure water is usually negligible.

 $PPM = \frac{Amount of Solute}{Amount of Solution} \times 10^{6}$ $PPM = \frac{mg of Solute}{kg of Solution} = \frac{mg of Solute}{L of Solution}$

Parts Per Billion Concentration

$PPB = \frac{Part (solute)}{Whole (solution)} \times 10^{9}$

Solution Concentrations: Mole Fraction, X_A

- The mole fraction is the fraction of the moles of one component in the total moles of all the components of the solution.
- Total of all the mole fractions in a solution = 1.
- Unitless
- The mole percentage is the percentage of the moles of one component in the total moles of all the components of the solution.
 – = mole fraction × 100%

Converting Concentration Units

- 1. Write the given concentration as a ratio.
- 2. Separate the numerator and denominator.
 - Separate into the solute part and solution part
- 3. Convert the solute part into the required unit.
- 4. Convert the solution part into the required unit.
- 5. Use the definitions to calculate the new concentration units.

TABLE 12.5 Solution Concentration Terms		
Unit	Definition	Units
Molarity (M)	amount solute (in mol) volume solution (in L)	$\frac{mol}{L}$
Molality (<i>m</i>)	amount solute (in mol) mass solvent (in kg)	mol kg
Mole fraction (χ)	amount solute (in mol) total amount of solute and solvent (in mol)	None
Mole percent (mol %)	$rac{100\%}{100\%} imes$ amount solute (in mol) $ imes$ 100% total amount of solute and solvent (in mol)	%
Parts by mass	$rac{\text{mass solute}}{\text{mass solution}} imes rac{\text{multiplication factor}}{\text{mass solution}}$	
Percent by mass (%)	Multiplication factor $= 100$	%
Parts per million by mass (ppm)	Multiplication factor = 10^6	ppm
Parts per billion by mass (ppb)	Multiplication factor = 10^9	ppb
Parts by volume (%, ppm, ppb)	$rac{\mathrm{volume\ solute}}{\mathrm{volume\ solution}} imes \mathrm{multiplication\ factor\ }^{*}$	

*Multiplication factors for parts by volume are identical to those for parts by mass.

Mass percent - the ratio of mass units of solute to mass units of solution, expressed as a percent

Find the mass percent of $CuSO_4$ in a solution whose density is 1.30 g/ml and whose molarity is 4.73 M.

Mole fraction - the ratio of moles of solute to total moles of solution

What is the mole percent of ethanol (C_2H_5OH), which consists of 71.0 g of ethanol for every 14.3 g of water present?

Molality – moles of solute per kilogram of solvent

$Molality = m = \frac{moles \ solute}{kilogram \ solvent}$

What is the molality of solution of 33.5 g propanol (CH₃CH₂CH₂OH) in 152 ml water, if the density of water is 1.00 g/ml?

Inderity - the ratio of moles of solute to liters of solution

$Molarity = M = \frac{moles \, of \, solute}{Liter \, of \, solution}$

A solution containing 481.6 g of $Mg(NO_3)_2$ per liter has a density of 1.114 g/ml. The molarity of the solution is:

3.247 M B 2.915 M **C** 9.740 M D 3.617 M None of these E