N32 - SOLUTIONS

Heat of Solution

N32 - SOLUTIONS

Heat of Solution

Target: I can perform calculations to determine if making a particular solution is an endothermic or exothermic reaction.

Heat of Solution

The Heat of Solution is the amount of heat energy absorbed (endothermic) or released (exothermic) when a specific amount of solute dissolves in a solvent.

Substance	Heat of Solution (kJ/mol)	
NaOH	-44.51	
NH_4NO_3	+25.69	
KNO ₃	+34.89	
HCI	-74.84	

Heat of Solution

- When some compounds, such as NaOH, dissolve in water, a lot of heat is released.
 - -The container gets hot.

- When other compounds, such as NH₄NO₃, dissolve in water, heat is absorbed from the surroundings.
 - -The container gets cold.

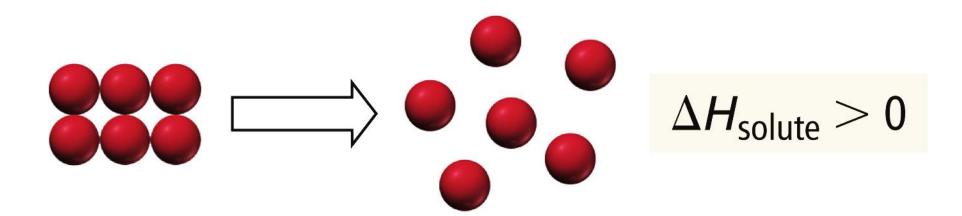
Why is this???

Energetics of Solution Formation: The Enthalpy of Solution

To make a solution you must

- 1. Overcome all attractions between the solute particles; therefore, ΔH_{solute} is endothermic. ΔH_1
- 2. Overcome some attractions between solvent molecules; therefore, $\Delta H_{solvent}$ is endothermic. ΔH_2
- 3. Form new attractions between solute particles and solvent molecules; therefore, ΔH_{mix} is exothermic. ΔH_3

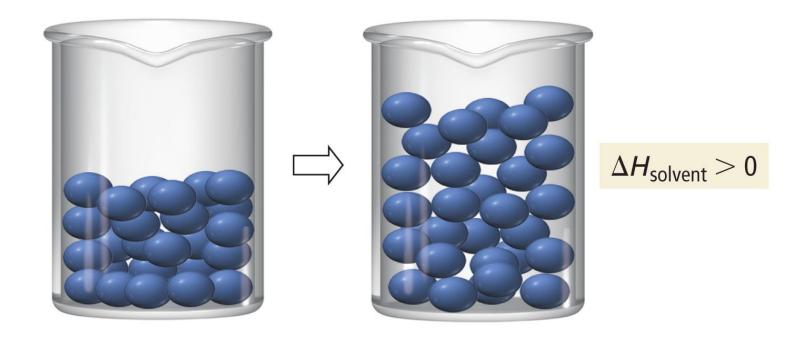
Energetics of Solution Formation: The Enthalpy of Solution


The overall ΔH for making a solution depends on the relative sizes of the ΔH for these three processes.

$$\Delta H_{sol'n} = \Delta H_{solute} + \Delta H_{solvent} + \Delta H_{mix}$$

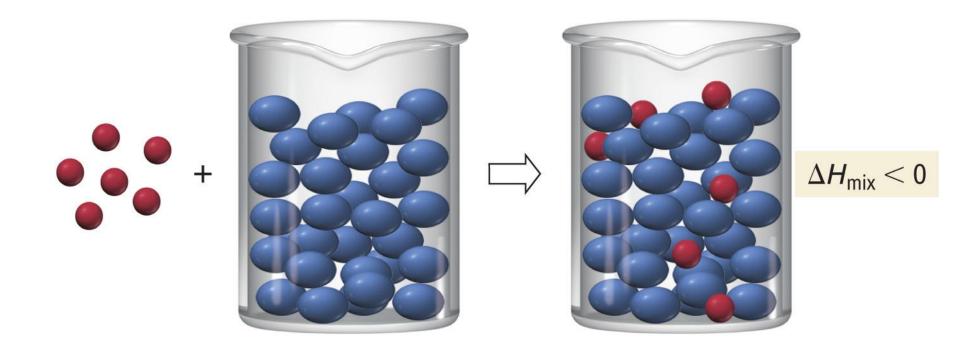
The Solution Process

Step 1:

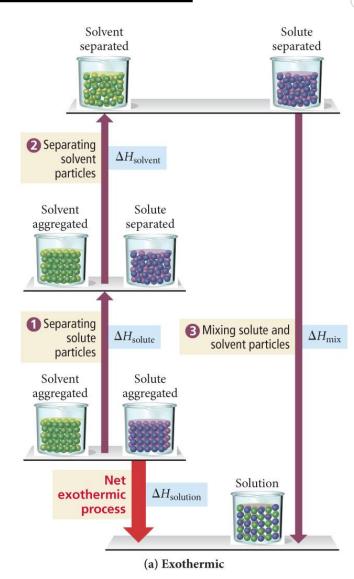

Separating the solute into its constituent particles

The Solution Process

Step 2:

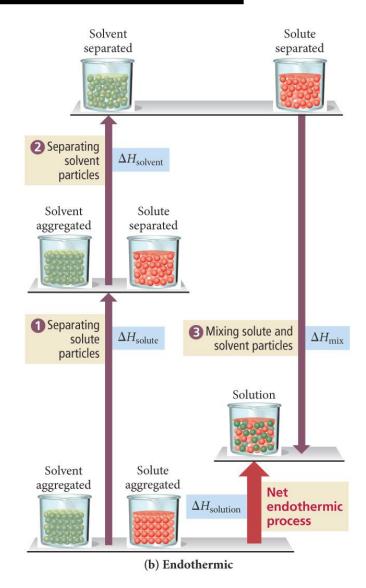

Separating the solvent particles from each other to make room for the solute particles

The Solution Process


Step 3:

Mixing the solute particles with the solvent particles

Energetics of Solution Formation


If the total energy cost for breaking attractions between particles in the pure solute and pure solvent is less than the energy released in making the new attractions between the solute and solvent, the overall process will be exothermic.

Energetics of Solution Formation

duE

If the total energy cost for breaking attractions between particles in the pure solute and pure solvent is greater than the energy released in making the new attractions between the solute and solvent, the overall process will be endothermic.

Factors Favoring Solution Formation

- Negative value of $\Delta H_{sol'n}$ (exothermic)
- Positive ΔS = Increase entropy

• For positive values of $\Delta H_{sol'n}$ (endothermic) it is the increase in entropy that outweighs the + ΔH and allows the solution process of occur

Back to Thermodynamics!

We want ΔG° = negative! Spontaneous!

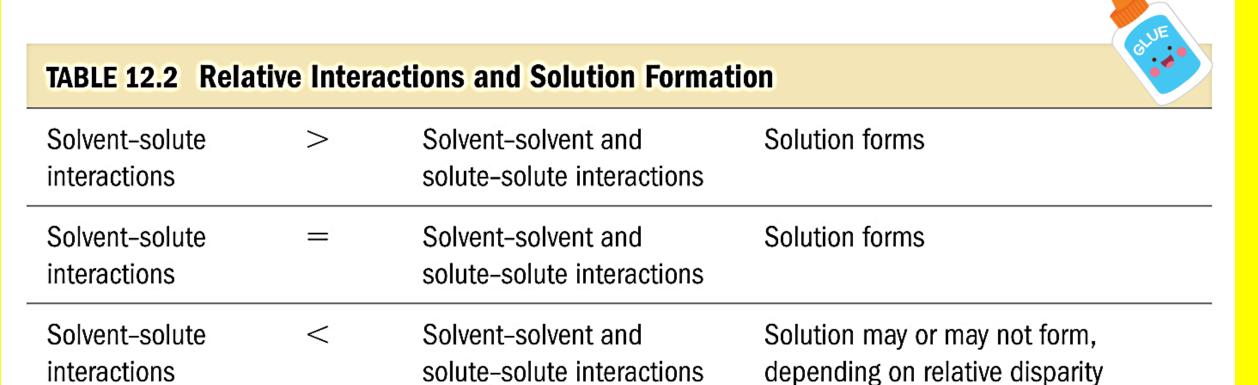
"Like Dissolves Like"

Nonpolar solutes dissolve best in nonpolar solvents

Fats Benzene

Steroids Hexane

Waxes Toluene


Polar and ionic solutes dissolve best in polar solvents

Inorganic Salts Water

Sugars Small alcohols

Acetic acid

Relative Interactions & Solution Formation

Predicting Solution Formation

Solute/ Solvent/	ΔH_1	ΔH_2	ΔH_3	$\Delta H_{sol'n}$	Outcome
Polar/ Polar	+ large	+ large	- large	+/- small	(usually) Solution Forms
Nonpolar/ Polar	+ small	+ large	- small	+ large	(usually) No solution Forms
Nonpolar/ Nonpolar	+ small	+ small	- small	+/- small	(usually) Solution Forms
Polar/ Nonpolar	+ large	+ small	- small	+ large	(usually) No solution Forms

Molar Heat of Solution

Back to calorimetry!

The molar heat of solution, ΔH_{soln} , of NaOH is -44.51 kJ/mol. In a certain experiment, 50.0 g of NaOH is completely dissolved in 1.000 L of 20.0°C water in a foam cup calorimeter. Assuming no heat loss, and the solution has the same specific heat as water, calculate the final temperature of the water.

$$Q = mC\Delta T = mC(T_{final}-T_{initial})$$

$$-5.56 \times 10^4 \text{ J} = (50.0 \text{ g} + 1000. \text{ g})(4.184 \text{ J/}_{g^{\circ}\text{C}})(\Delta \text{T})$$

 $\Delta \text{T} = -12.7 \text{ °C}$ $-12.7 \text{ °C} = \text{T}_{\text{final}} - \text{T}_{\text{initial}} = \text{T}_{\text{final}} - 20.0 \text{ °C}$
 $\text{T}_{\text{final}} = 32.7 \text{ °C}$

Link to YouTube Presentation

https://youtu.be/lxOK4y3Jm-Y