
N31 - SOLUTIONS

Target: I can convert between different concentration units and can use concentration calculations to find helpful information like how many moles are present.

N31 - SOLUTIONS

Concentration

<u>Solute</u>

A solute is the dissolved substance in a solution.

Salt in salt water

Sugar in soda drinks

Carbon dioxide in soda drinks

Solvent A solvent is the dissolving medium in a solution.

Water in salt water

Water in soda

Molarity

Moles of solute per 1 liter of solution - Describes how many molecules of solute in each liter of solution

If a sugar solution concentration is 2.0 M,

- -1 liter of solution contains 2.0 moles of sugar
- -2 liters = 4.0 moles sugar
- -0.5 liters = 1.0 mole sugar

 $Molarity, M = \frac{moles \ of \ solute}{Liters \ of \ solution}$

Molality

Moles of solute per 1 kilogram of solvent

Careful! Defined in terms of amount of <u>solvent</u>, not the <u>solution</u> like most of the other calculations

Does not vary with temperature

-Because based on masses, not volumes

$$Molality, m = \frac{moles \ of \ solute}{kg \ of \ solvent}$$

Parts Solute in Parts Solution

Parts can be measured by mass or volume.

Parts are generally measured in the same units.

- -By mass in grams, kilogram, lbs, etc.
- -By volume in mL, L, gallons, etc.
- -Mass and volume combined in grams and mL

Parts Solute in Parts Solution

Percentage = parts of solute in every 100 parts solution

 If a solution is 0.9% by mass, then there are 0.9 grams of solute in every 100 grams of solution (or 0.9 kg solute in every 100 kg solution).

Parts per million = parts of solute in every 1 million parts solution

 If a solution is 36 ppm by volume, then there are 36 mL of solute in 1 million mL of solution.

Mass Percent

Mass percent - the ratio of mass units of solute to mass units of solution, expressed

$$mass \ percent = \frac{mass \ of \ solute}{mass \ of \ solution} x100$$

Parts per Million - PPM

Grams of solute per 1,000,000 g of solution

- mg of solute per 1 kg of solution
- 1 liter of water = 1 kg of water

For aqueous solutions we often approximate the kg of the solution as the kg or L of water. For dilute solutions, the difference in density between the solution and pure water is usually negligible.

$$PPM = \frac{amount \, of \, solute}{amount \, of \, solution} x10^6$$

Remember that the density of water is 1g/1mL Same as 1000g/1L Same as 1kg/1L

Parts per Billion - PPB

$$PPB = \frac{amount \, of \, solute}{amount \, of \, solution} x10^9$$

$$Parts \ per \ \dots = \ \frac{amount \ of \ solute \ (PART)}{amount \ of \ solution \ (WHOLE)} \ x \ some \ factor$$

$$\% = x \ 100$$

$$ppm = x \ 1,000,000 = x10^{6}$$

$$ppb = x1,000,000 = x10^{9}$$

<u>Mole Fraction</u> X_A

Mole fraction - the fraction of the moles of one component in the total moles of all the components of the solution.

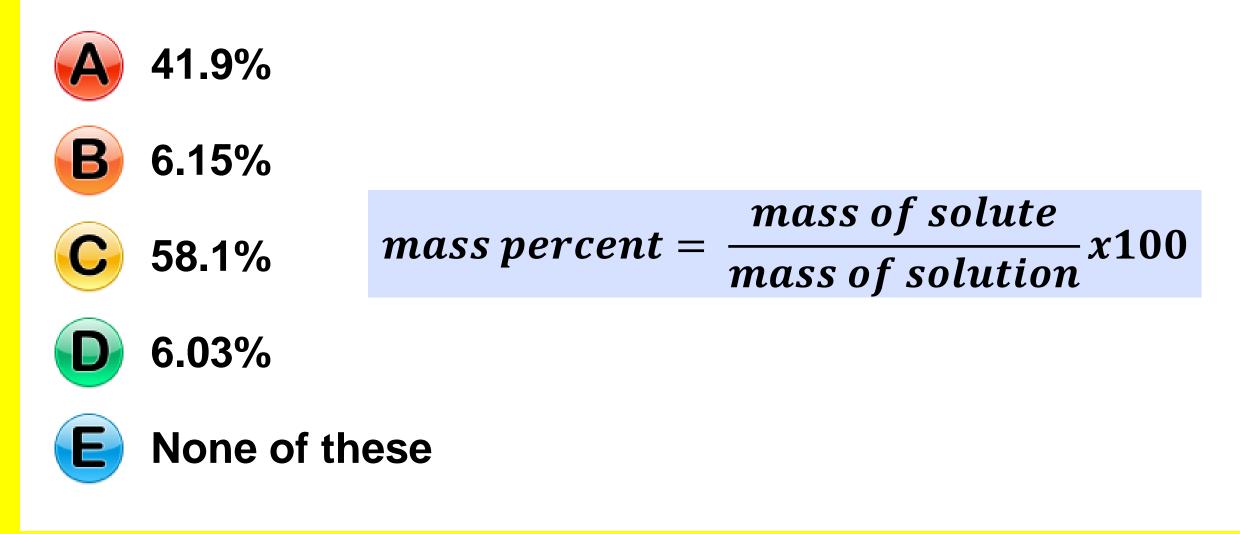
- -Total of all the mole fractions in a solution = 1.
- -No units

$$X_A = \frac{n_A}{n_A + n_B + \cdots}$$

Mole percentage - the percentage of the moles of one component in the total moles of all the components of the solution.

= mole fraction × 100%

$$X_A = \frac{n_A}{n_A + n_B + \cdots} x \ \mathbf{100}$$


Unit	Definition	
Molarity (M)	amount solute (in mol) volume solution (in L)	$\frac{\text{mol}}{\text{L}}$
Molality (<i>m</i>)	amount solute (in mol) mass solvent (in kg)	mol kg
Mole fraction (χ)	tion (χ) amount solute (in mol) total amount of solute and solvent (in mol)	
Mole percent (mol %)	amount solute (in mol) $ imes$ 100% total amount of solute and solvent (in mol)	%
Parts by mass	$rac{\mathrm{mass\ solute}}{\mathrm{mass\ solution}} imes rac{\mathrm{multiplication\ factor}}{\mathrm{mass\ solution}}$	
Percent by mass (%)	Multiplication factor $= 100$	%
Parts per million by mass (ppm)	Multiplication factor = 10^6	ppm
Parts per billion by mass (ppb)	Multiplication factor $= 10^9$	ppb
Parts by volume (%, ppm, ppb)	$rac{ ext{volume solute}}{ ext{volume solution}} imes ext{ multiplication factor }^{*}$	

*Multiplication factors for parts by volume are identical to those for parts by mass.

Converting Concentration Units

- 1. WRITE YOUR UNITS. SERIOUSLY.
- 2. Write the given concentration as a ratio.
- 3. Separate the numerator and denominator.
 - Think about each separately
 - Separate into the solute part and solution part
- 4. Convert the solute part into the required unit.
- 5. Convert the solution part into the required unit.
- 6. Use the definitions to calculate the new final concentration units.

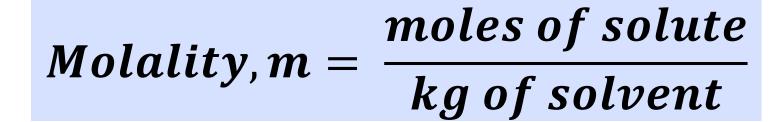
Find the mass percent of $CuSO_4$ in a solution whose density is 1.30 g/ml and whose molarity is 4.73 M.

Find the mass percent of $CuSO_4$ in a solution whose density is 1.30 g/ml and whose molarity is 4.73 M.

A	41.9%	1 L s		on =				•	
	0 4 50/		4.73mol		159.62g =				
B	6.15%				1m	ol		solute	
C	58.1%	1	L=	1000)mL	1.30)g	= 1300g	
D	6.03%					1m	L	solution	
E	None of the	se	-	755g 300g	x 10	0 = 5	8.15	5%	

What is the mole percent of ethanol (C_2H_5OH), which consists of 71.0 g of ethanol for every 14.3 g of water present?

$$X_A = \frac{n_A}{n_A + n_B + \cdots} x \ \mathbf{100}$$


What is the mole percent of ethanol (C_2H_5OH), which consists of 71.0 g of ethanol for every 14.3 g of water present?

66.0%		/1.0g 1r		= 1.54 mol	
			46.08g	ethanol	
B 1.94%		14.3g	1mol	= 0.794 mol	
C 1.52%			18.02g	water	
D 83.2%	1	.54mol	X	100 = 65.99%	
E 34.0%	(1.54m	ol + 0.794	1mol)		

What is the molality of solution of 33.5 g propanol (CH₃CH₂CH₂OH) in 152 ml water, if the density of water is 1.00 g/ml?

B

0.273 m

None of these

What is the molality of solution of 33.5 g propanol (CH₃CH₂CH₂OH) in 152 ml water, if the density of water is 1.00 g/ml?

A 3.67 m	33.5g	1mol	= 0.557 mol			
B 0.00367 m		60.11g	solute			
C 0.273 m		7				
D 0.557 m	$\frac{0.557 \text{mol}}{0.152 \text{kg}} = 3.67 \text{m}$					
E None of these						

A solution containing 481.6 g of $Mg(NO_3)_2$ per liter has a density of 1.114 g/ml. The molarity of the solution is:

A solution containing 481.6 g of $Mg(NO_3)_2$ per liter has a density of 1.114 g/ml. The molarity of the solution is:

2.915 M

9.740 M

3.617 M

None of these

A) 3.247 M 1mol 481.6g = 3.247 mol solute 148.33<u>g</u>

= 3.247 mol/1L = 3.247 M

*Density was just extra info! Very common in solutions problems to have more info than you need.

Link to YouTube Presentation

https://youtu.be/op8vqy3uxq8