N32 - SOLUTIONS

Target: I can perform calculations to determine if making a particular solution is an endothermic or exothermic reaction.

N32 - SOLUTIONS

Heat of Solution

The Heat of Solution is the amount of heat energy absorbed (endothermic) or released (exothermic) when a specific amount of solute dissolves in a solvent.

Substance	Heat of Solution (kJ/mol)		
NaOH	-44.51		
NH ₄ NO ₃	+25.69		
KNO ₃	+34.89		
HCI	-74.84		

Heat of Solution

- When some compounds, such as NaOH, dissolve in water, a lot of heat is released.
 - -The container gets hot.

- When other compounds, such as NH₄NO₃, dissolve in water, heat is absorbed from the surroundings.
 - -The container gets cold.

Why is this???

Energetics of Solution Formation: The Enthalpy of Solution

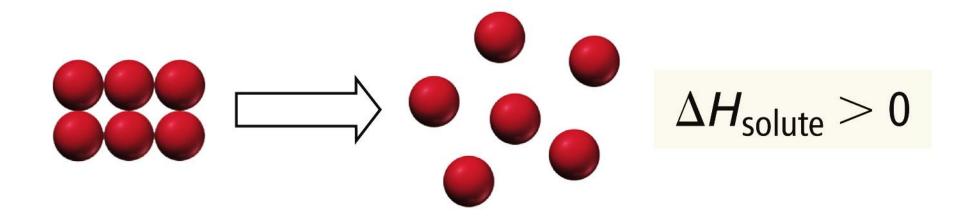
To make a solution you must

1. Overcome all attractions between the solute particles; therefore, ΔH_{solute} is endothermic. ΔH_1

2. Overcome some attractions between solvent molecules; therefore, $\Delta H_{solvent}$ is endothermic. ΔH_2

3. Form new attractions between solute particles and solvent molecules; therefore, ΔH_{mix} is exothermic. ΔH_3

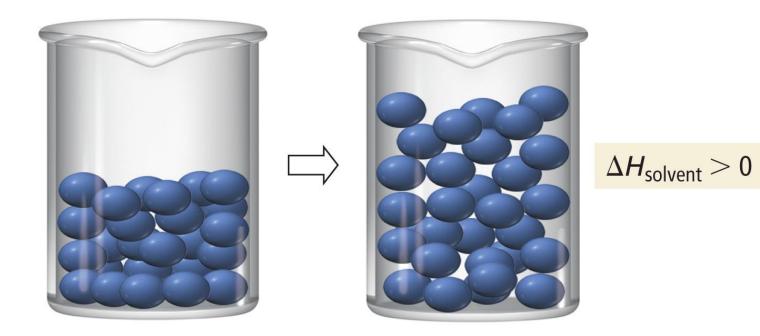
Energetics of Solution Formation: The Enthalpy of Solution


The overall ΔH for making a solution depends on the relative sizes of the ΔH for these three processes.

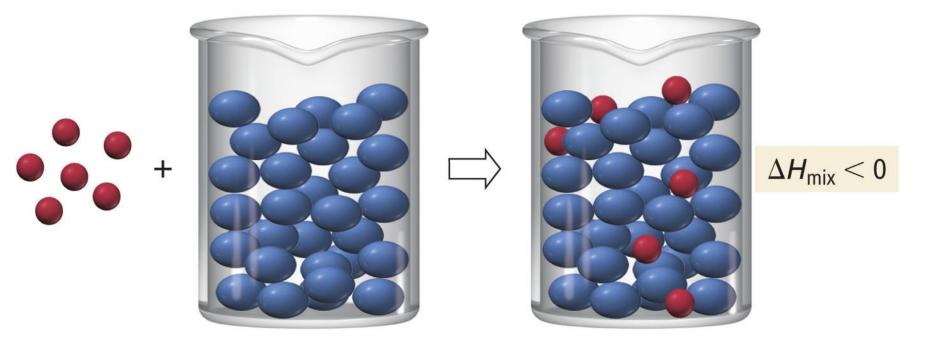
$\Delta H_{sol'n} = \Delta H_{solute} + \Delta H_{solvent} + \Delta H_{mix}$

The Solution Process

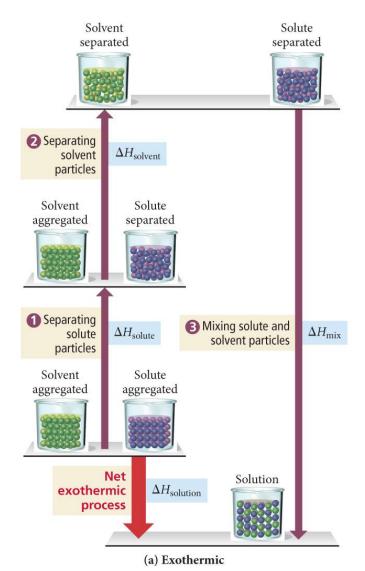
Step 1:


Separating the solute into its constituent particles

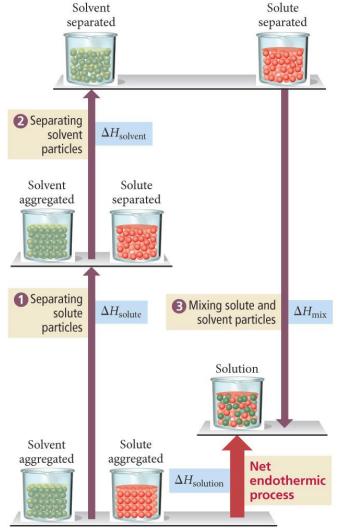
The Solution Process


Step 2:

Separating the solvent particles from each other to make room for the solute particles


The Solution Process

Step 3: Mixing the solute particles with the solvent particles


Energetics of Solution Formation

If the total energy cost for breaking attractions between particles in the pure solute and pure solvent is **less than** the energy released in making the new attractions between the solute and solvent, the overall process will be **exothermic.**

Energetics of Solution Formation

If the total energy cost for breaking attractions between particles in the pure solute and pure solvent is greater than the energy released in making the new attractions between the solute and solvent, the overall process will be endothermic.

(b) Endothermic

Relative Interactions & Solution Formation

When endothermic -

Solute-Solvent attractions

<

Solute-Solute + Solvent-Solvent attractions

The solution will only form if the energy difference is small enough to be overcome by a large enough increase in entropy from mixing.

Relative Interactions & Solution Formation

TABLE 12.2 Relative Interactions and Solution Format

Solvent-solute interactions	>	Solvent-solvent and solute-solute interactions	Solution forms
Solvent-solute interactions	_	Solvent-solvent and solute-solute interactions	Solution forms
Solvent–solute interactions	<	Solvent-solvent and solute-solute interactions	Solution may or may not form, depending on relative disparity

"Like Dissolves Like"

Nonpolar solutesdissolve best in nonpolar solventsFatsBenzeneSteroidsHexaneWaxesToluene

 Polar and ionic solutes
 dissolve best in polar solvents

 Inorganic Salts
 Water

 Sugars
 Small alcohols

 Acetic acid

Predicting Solution Formation

Solute/ Solvent/	ΔH_1	∆H₂	ΔH_3	∆ H _{sol'n}	Outcome
Polar/ Polar	+ large	+ large	- large	+/-small	(usually) Solution Forms
Nonpolar/ Polar	+ small	+ large	+/- small	+ large	No solution forms
Nonpolar/ Nonpolar	+ small	+ small	+/- small	+/- small	(usually) Solution Forms
Polar/ Nonpolar	+ large	+ small	+/- small	+ large	No solution forms

Factors Favoring Solution Formation

- Negative value of $\Delta H_{sol'n}$ (exothermic)
- Positive ΔS = Increase entropy

• For positive values of $\Delta H_{sol'n}$ it is the increase in entropy that outweighs the increase in energy and causes the solution process of occur

Link to YouTube Presentation

https://youtu.be/lxOK4y3Jm-Y