Practice Problems - Concentrations of Solutions

- 1. What is the mass percent of a solution of 7.6 grams sucrose in 83.4 grams of water?
- 2. How many grams of sucrose must be added to 375 grams of water to prepare a 2.75 % by mass solution of sucrose?
- 3. A saline solution, NaCl in water, is 0.92 % (m/v). How many grams of NaCl are required to prepare 35.0 mL of this solution?
- 4. What is the molarity of 4.35 moles KMnO₄ dissolved in 750 mL of solution?
- 5. What is the molarity of 20.0 grams of NaOH dissolved in 1.50 L of solution?
- 6. How many grams of KNO₃ are present in 185 mL of a 2.50 M solution?
- 7. How many mL of a 0.10 M FeSO₄ solution are required to provide 0.35 g of FeSO₄?
- 8. How many mL of a 0.300 M AgNO₃ solution will it take to make 500 mL of a 0.100 M AgNO₃ solution?
- 9. A solution contains 128 g of CH₃OH and 108 g of water. What is the mole fraction of CH₃OH in the solution?
- 10. What mass of glucose, $C_6H_{12}O_6$, must be dissolved in 150.0 g of water so that the mole fraction of glucose is 0.125?
- 11. What mass of water must be used to prepare a solution of 25.5 g of CaCl₂ dissolved in water if the mole fraction of the CaCl₂ in solution is 0.105?
- 12. What is the molality of a solution that contains 46 g of CH₃OH dissolved in 348 g of water?
- 13. What mass of AgNO₃ must be dissolved in 200 g of water to prepare a 0.250 m solution.
- 14. If an aqueous solution of urea, N_2H_4CO , is 26.0 % by mass and has a density of 1.07 g/mL, calculate the molality of urea in solution
- 15. What is the percent by mass of methanol, CH₃OH, if the mole fraction of methanol dissolved in water is 0.500?
- 16. Calculate the molarity of a solution that is 39.77 % H₂SO₄ by mass. The density of the solution is 1.305 g/mL.
- 17. What is the molality of a solution that contains 128 grams of CH₃OH in 108 grams of water?
- 18. Calculate the weight percent of HCl in 3.20 M solution. The density of the solution is 1.10 g/mL.
- 19. Calculate the molality of Ca(OH)₂ in a 1.50 M aqueous solution that has a density of 1.320 g/mL.
- 20. What is the mole fraction of commercial "concentrated" hydrofluoric acid, which is 55.0 % HF by mass?