farget: I can describe advancements in the model of the atom, and can count Ĺ subatomic particles ATOMIC #'S AND N5 ISOTOPES

HISTORY OF ATOMIC STRUCTURE PART 1

John Dalton

DALTON'S ATOMIC THEORY (1808)

All matter composed of extremely small particles called atoms

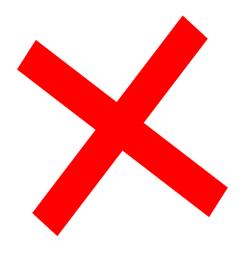


John Dalton

DALTON'S ATOMIC THEORY (1808)

2) Atoms of a given element are identical in size, mass, and other properties

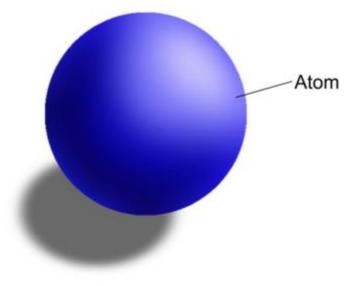
DALTON'S ATOMIC THEORY (1808)


 Atoms of different elements differ in size, mass, and other properties

DALTON'S ATOMIC THEORY (1808)

4) Atoms cannot be subdivided, created, or destroyed

Atoms of different 5) elements combine in simple wholenumber ratios to form chemical compounds


DALTON'S ATOMIC THEORY (1808)

 In chemical reactions, atoms are combined, separated, or rearranged

DALTON'S BILLIARD BALL MODEL

MODERN ATOMIC THEORY – WHAT WAS WRONG WITH DALTON'S THEORY?

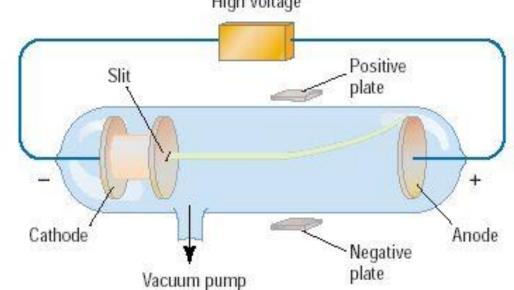
Atoms have an AVERAGE MASS!

It is an AVERAGE

because of ISOTOPES!

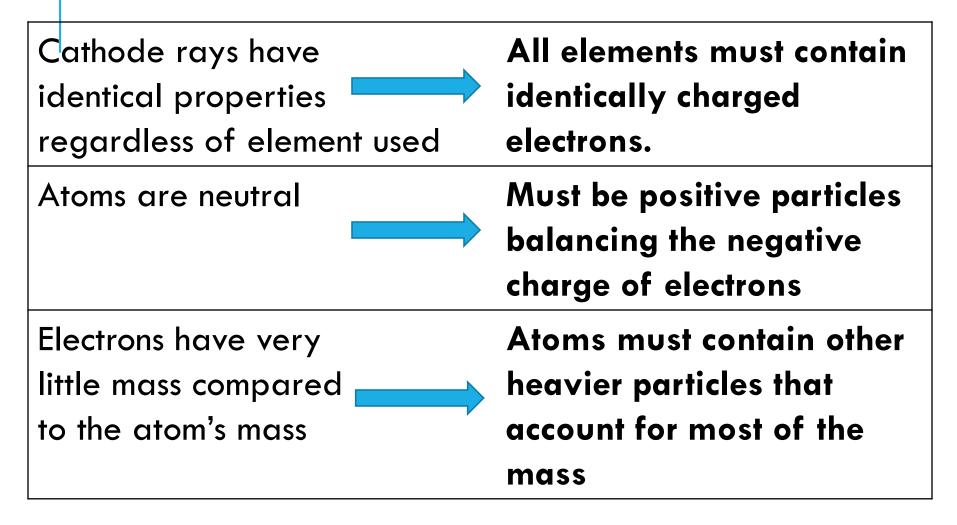
Atoms cannot be divided, created

or destroyed

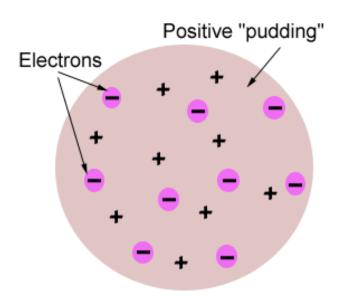

during NORMAL

chemical reactions

BUT they CAN do those things during NUCLEAR reactions!

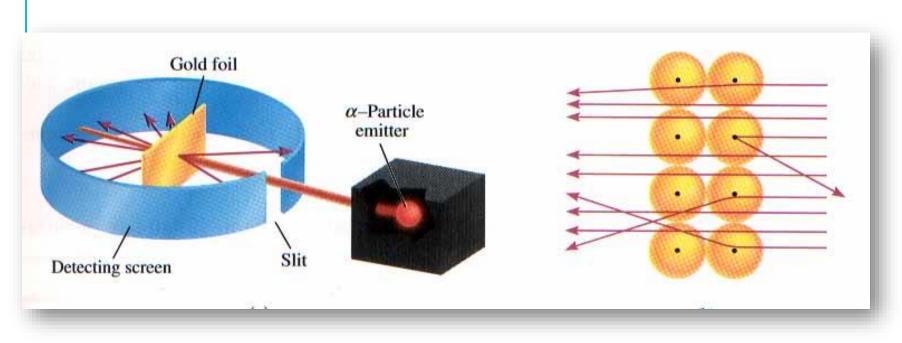

DISCOVERY OF THE ELECTRON

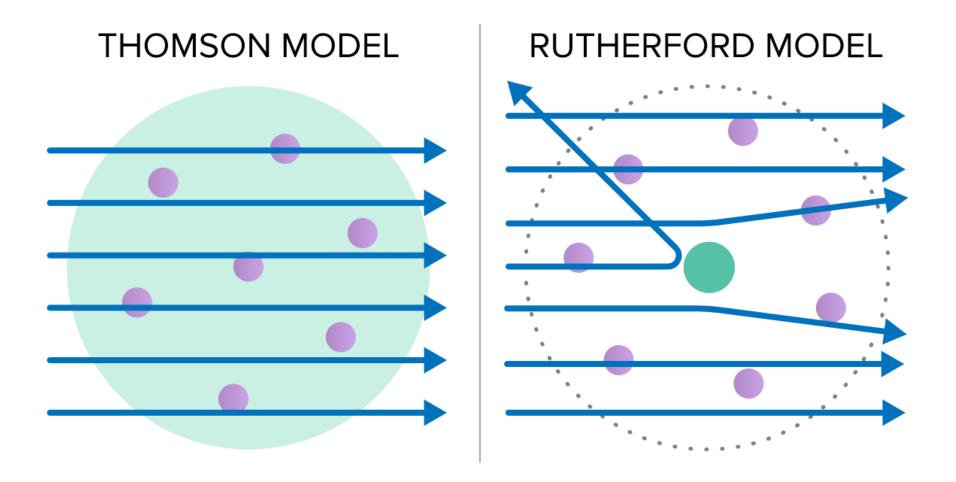
In 1897, J.J. Thomson used a cathode ray tube to deduce the presence of a negatively charged particle.


Cathode ray tubes pass electricity through a gas that is contained at a very low pressure. https://www.youtube.com/watch?v=O9Goyscbazk

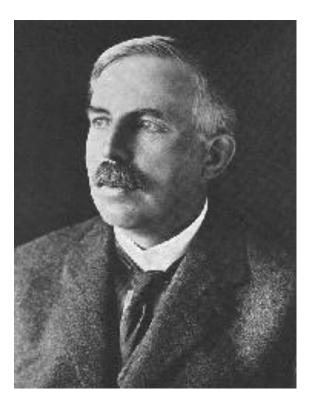
CONCLUSIONS FROM THE STUDY OF THE ELECTRON

THOMSON'S ATOMIC MODEL

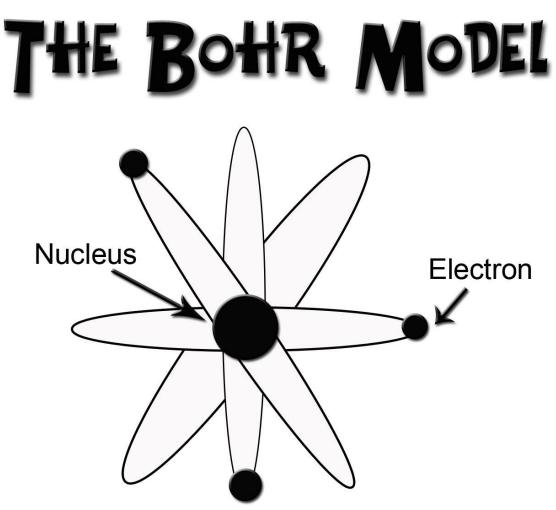



Thomson believed that the electrons were like plums embedded in a positively charged "pudding," thus it was called the "plum pudding" model. We don't usually eat plum pudding in this country, so I like to call it the chocolate chip cookie model.

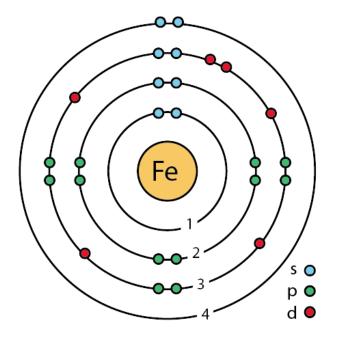
RUTHERFORD'S GOLD FOIL EXPERIMENT

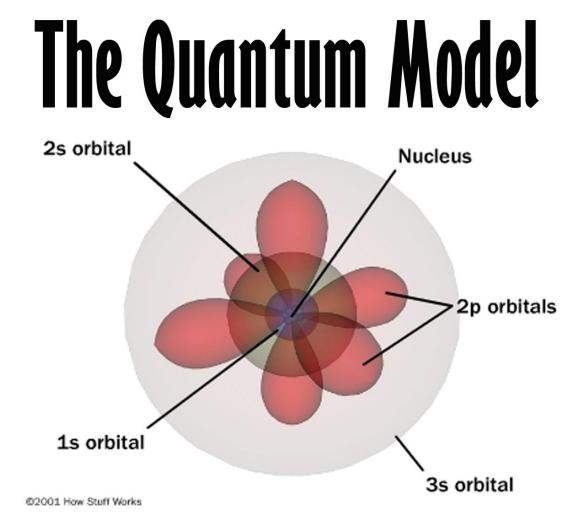

- \Box Alpha (α) particles are helium nuclei
- Particles were fired at a thin sheet of gold foil
- Particle hits on the detecting screen (film) are recorded

https://www.youtube.com/watch?v=XBqHkraf8iE


RUTHERFORD'S FINDINGS

- 1) Most of the particles passed right through
- 2) A few particles were deflected
- 3) A FEW were <u>greatly</u> deflected




CONCLUSIONS:

 The nucleus is <u>small</u>
The atom is <u>mostly</u> <u>empty space</u>
The nucleus is <u>dense</u>
The nucleus is <u>positive</u>ly charged

The "planet" model because it looks like the planets revolving around the sun. These Electrons have "paths" that they follow around the Nucleus in the center. Usually we DRAW atoms like this but its not accurate!

This is a hard model to understand. The Electrons don't follow paths, they are not objects at all! Instead they are pure charge that has a probability of being somewhere in those orbitals.

ATOMIC NUMBERS AND ISOTOPES PART 2

ATOMIC PARTICLES

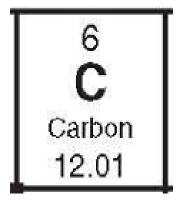
Particle	Charge	Mass #	Location
Electron	-1	0	Electron cloud
Proton	+1	1	Nucleus
Neutron	0	1	Nucleus

ATOMIC NUMBERS

<u>We know:</u> Nucleus has protons (p^+), neutrons (n^0), and electrons(e^-) are on the outside of nucleus

But how many of each???

Atomic Mass Number


(round to the nearest whole #) # of protons + # of neutrons

Atomic Number # of protons # of electrons = # of protons

ATOMIC NUMBER

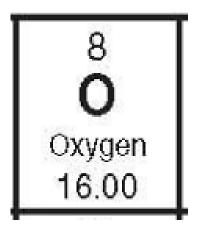
The number of protons in the nucleus of each atom of that element.

Element	# of protons	Atomic # (Z)
Carbon	6	6
Phosphorus	15	15
Gold	79	79

Changing Protons makes a new ELEMENT with a NEW name!

Sodium has 11 protons. Take one away and it has 10 and is no longer sodium...it is now Neon!

WHICH OF THE FOLLOWING DETERMINES THE IDENTITY OF AN ATOM?


- A. Number of protons
- **B.** Number of electrons
- **C.** Number of neutrons
- D. Total number of protons and neutrons
- E. Total number of protons and electrons

WHICH OF THE FOLLOWING DETERMINES THE IDENTITY OF AN ATOM?

- A. Number of protons
- **B.** Number of electrons
- **C.** Number of neutrons
- D. Total number of protons and neutrons
- E. Total number of protons and electrons

MASS NUMBER

The number of protons and neutrons in the nucleus of an isotope. Mass $\# = p^+ + n^0$

Nuclide	p+	nº	e⁻	Mass #
Oxygen - 18	8	10	8	18
Arsenic - 75	33	42	33	75
Phosphorus - 31	15	16	15	31

Changing Neutrons makes a new ISOTOPE

ISOTOPES

Atoms of the same element having different masses due to varying numbers of <u>neutrons</u>.

Isotope	Protons	Electrons	Neutrons	Nucleus
Hydrogen–1 (protium)	1	1	0	+
Hydrogen-2 (deuterium)	1	1	1	+
Hydrogen-3 (tritium)	1	1	2	+

AVERAGE ATOMIC MASSES

The average of all the naturally occurring isotopes of that element.

Isotope	Symbol	Composition of the nucleus	% in nature
Carbon-12	¹² C	6 protons 6 neutrons	98.89%
Carbon-13	¹³ C	6 protons 7 neutrons	1.11%
Carbon-14	¹⁴ C	6 protons 8 neutrons	<0.01%

Carbon = 12.011

Changing Electrons makes a new ION

IONS

When you change the number of electrons in an atom.

lon	Change	# of P to # of e-	Charge	Example symbol
Cation	Lost electrons	P > e-	positive	Ca ²⁺
Anion	Gained electrons	P < e-	negative	N ³⁻

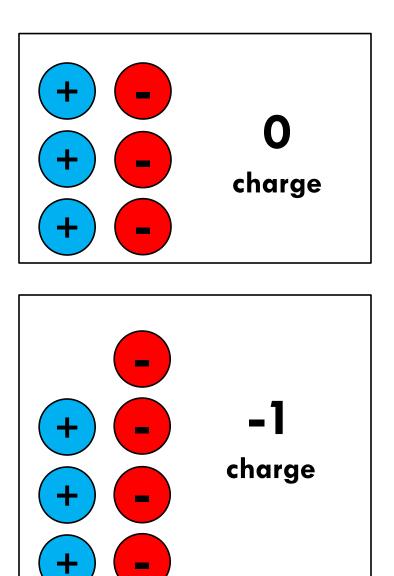
SodiumNormally:11 protons+1111 electrons-11zero charge0

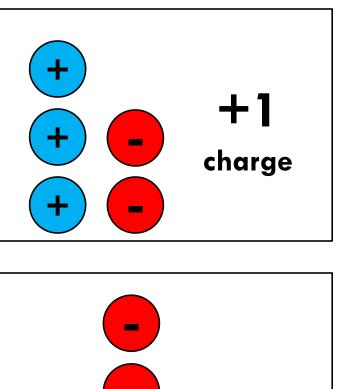
<u>Sodium</u>

Take away: 11 protons +11an electron 10 electrons -10 +1

positive charge

<u>Oxygen</u> Normally:


8 protons+88 electrons-8zero charge0


<u>Oxygen</u>

electrons

Give 2 extra: 8 protons +810 electrons -10

-2 negative charge

IONS!

Oxygen

O-2

Negative

Anion

Gained electrons

Sodium Na⁺¹ **Positive** Cation Took away electrons

Need some extra explanation?

What are Isotopes Video

<u>https://www.youtube.com/watch?v=Ebo</u> <u>WeWmh5Pg</u>

What are lons Video

<u>https://www.youtube.com/watch?v=WWc</u> <u>3k2723IM</u>

LINK TO YOUTUBE VIDEO OF PRESENTATION

https://youtu.be/vDzHcK1MUHo