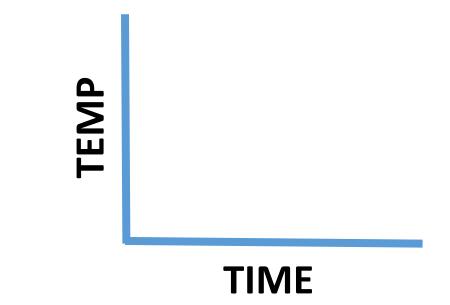
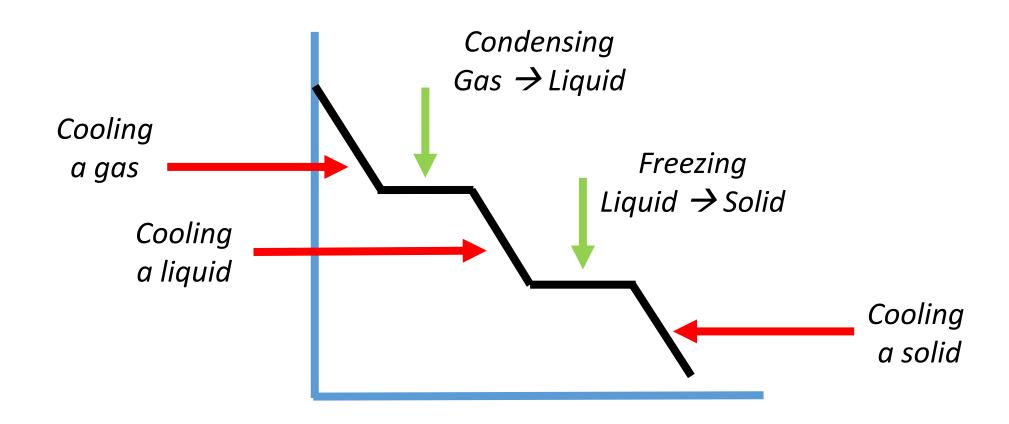
N37


Heating and Cooling Curves

Target: I can use heating and cooling curves to help calculate the energy changes during phase changes

Link to YouTube Presentation: https://youtu.be/g2srRytHiX0

What do they show us?


- Heating or cooling \rightarrow the sloped parts of graph
- Phase changes \rightarrow the flat parts of graph

Heating Curve

Cooling Curve

Why are some areas sloped and some flat?

Heating	Phase Changes		

(Cooling would just be the opposite of these things!)

Why are some areas sloped and some flat?

Heating	Phase Changes	
lssue:	lssue:	
SPEED	POSITION	
All the energy is going	All the energy is going	
towards SPEEDING UP	towards SPREADING OUT	
the molecules	the molecules	
Results in a temperature	Results in NO temperature	
change	change	

(Cooling would just be the opposite of these things!)

How is our math changed by NO $\Delta T?$

HEATING/COOLING

- $Q = mC\Delta T$
- C = J/g°C → Has a temperature component.
- So.... Cant use it for phase changes

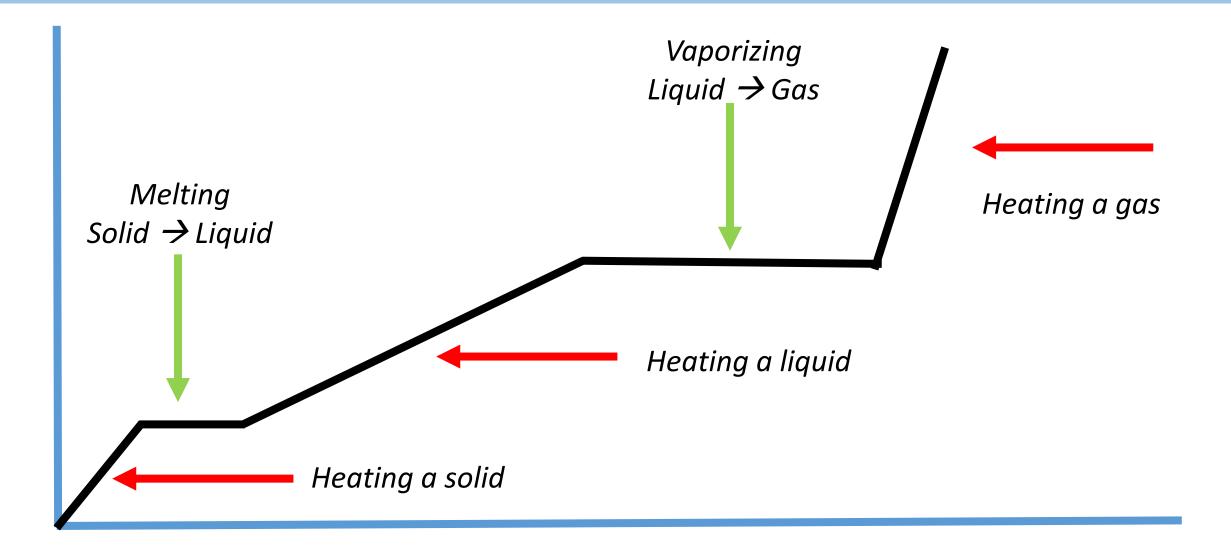
PHASE CHANGES

- $\Delta T = 0$ BUT Q $\neq 0$
- Get rid of ΔT, and replace C with something else
- Q = mL
- L = "Latent Heat" → J/g
 The energy required to phase change one gram of substance

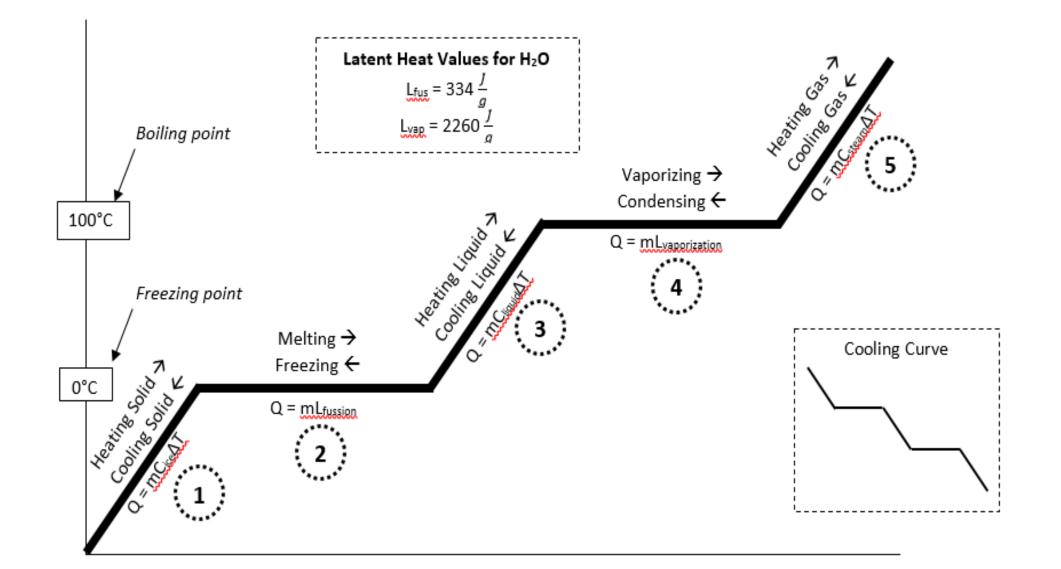
Specific Heat and Latent Heat Labels

HEATING/COOLING

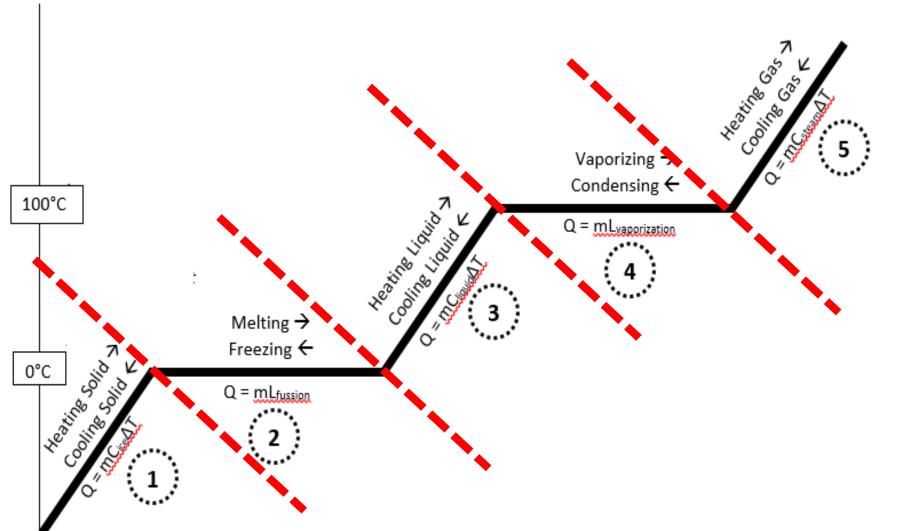
- C_{solid}
- C_{liquid}
- C_{gas}
- Always positive values


PHASE CHANGES

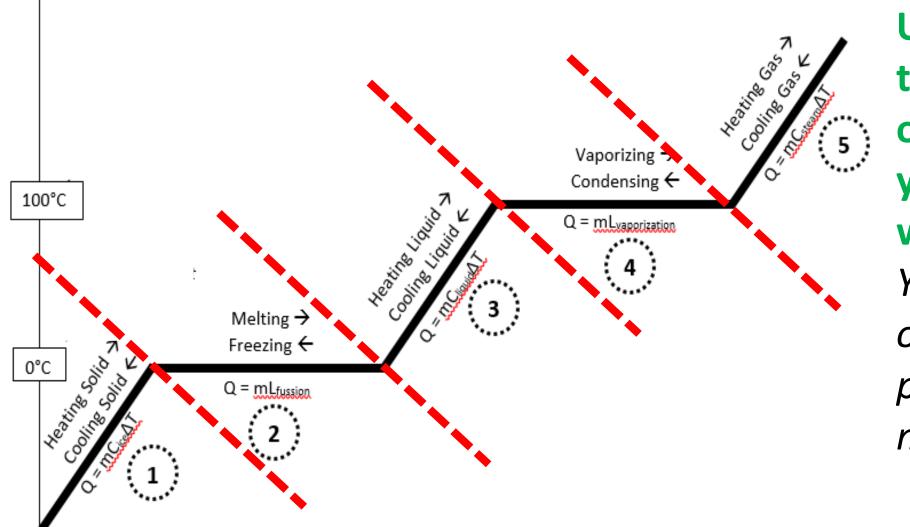
- L_{fusion}
- L_{vaporization}
- <u>Positive if endothermic</u> process (melting/vaporizing)
- Negative if exothermic process (condensing/freezing)


Values to Memorize for Water

Heating/Cooling		Phase Changes	
C _{ice}	2.09 J/g°C	L _{fus}	+ / - 334 J/g
C _{liq}	4.18 J/g°C	Lvap	+/- 2260 J/g
C _{steam}	1.87 J/g°C	L is (+) or (–) depending on direction!	


More Realistic Heating Curve of H20

Completely Labeled Heating Curve



Calculate ONE line segment at a time!!!


Calculate everything separately and then add up your answers. You could have up to five Q values to add up!

Careful with \Delta T Values!

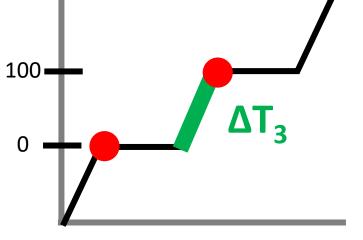
Use ONLY the temperature change on the ONE LINE you are working with at a time! You will see this on our practice problems in a minute...

What phases are happening where?

Practice Problems

- Glue the questions in your notebook
- Show your work the way I do!
- Annotate the practice problems with comments, tips, warnings, explanations, etc! These are NOTES not just practice problems!

Practice Problems


- 1. What is the energy needed to melt 326 grams of ice and heat it to 100°C?
- 2. Determine the energy required to convert 21.1 grams of ice at -6°C to steam at 100°C
- 3. What is the heat transfer involved when you convert 51 grams of water 0°C to ice at -20.3°C?
- 4. What is the energy absorbed when you melt 75 grams of ice at -5°C to water at 90°C?

1. What is the energy needed to melt 326 grams of ice and heat it to 100°C?

2 Melt ice3 Heat liquid

$$Q_2 = mL = (326g)(334 J/g) = 108884 J$$

 $Q_3 = mC\Delta T = (326g)(4.18J/gC)(100^\circ - 0^\circ) = 136268 J$
 $Q_T = Q_2 + Q_3$
 $= 245152 J$

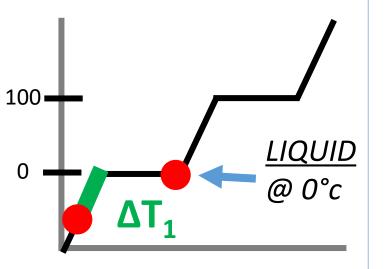
You could put it in kJ but we often don't bother

Determine the energy required to convert 21.1 grams of ice at -6°C to steam at 100°C

- 1 Heat ice
- 2 Melt ice
- ③ Heat liquid④ Vaporize

Steam @ 100, have to vaporize! Need line 4

 $100 \qquad \qquad \Delta T_3 \qquad \qquad \\ 0 \qquad \qquad \Delta T_1 \qquad \qquad$


 $Q_1 = mC\Delta T = (21.1g)(2.09_{J/gC})(0^{\circ} - 6^{\circ}) = 264.59 J$ $Q_2 = mL = (21.1g)(334 J/g) = 7047.4 J$ $Q_3 = mC\Delta T = (21.1g)(4.18_{J/gC})(100^{\circ} - 0^{\circ}) = 8819.8 J$ $Q_{4} = mL = (21.1g)(2260 J/g) = 47686 J$ $Q_T = Q_1 + Q_2 + Q_3 + Q_4$ = 63817.79 J

Double Negative! Be Careful!

3. What is the heat transfer involved when you convert 51 grams of water 0°C to ice at -20.3°C?

2 Freezing1 Cooling ice

Going backwards! L will be negative! ∆T will be negative Q will be negative!

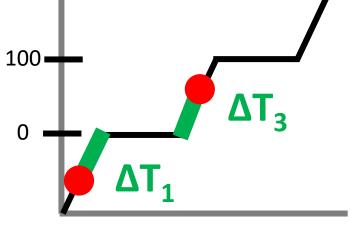
$$Q_2 = mL = (51g) (-334 J/g) = -17034 J$$

 $Q_1 = mC\Delta T = (51g)(2.09_{J/gC})(-20.3^{\circ}-0^{\circ}) = -2163.78 J$

$$\mathbf{Q}_{\mathrm{T}} = \mathbf{Q}_{2} + \mathbf{Q}_{1}$$

= **-**19197.78 J

Negative because energy was RELEASED! Cooling down is EXOTHERMIC! Yes, that seems strange to us but it is true!


4. What is the energy absorbed when you melt 75 grams of ice at -5°C to water at 90°C?

1 Heat ice

2 Melt ice

3 Heat liquid

You aren't "finishing" line 3! Stop early! Careful with you ΔT !

Double Negative! Be Careful!

 $Q_1 = mC\Delta T = (75g)(2.09_{J/gC})(0^{\circ} - 5^{\circ}) = 783.75 J$

 $Q_3 = mC\Delta T = (75g)(4.18_{J/gC})(90^{\circ} - 0^{\circ}) = 28215 J$

CAREFUL!

You are only going to 90°C ! You are stopping early! Tfinal = 90°C

$$\mathbf{Q}_{\mathrm{T}} = \mathbf{Q}_{1} + \mathbf{Q}_{2} + \mathbf{Q}_{3}$$

= 54048.75 J

YouTube Link to Presentation

https://youtu.be/g2srRytHiX0

1. What is the energy needed to melt 328 grams of ice and heat it
to 100°C?
2. melt ice
3. heat 110.
2. Determine the energy required to convert 21.1 grams of ice at
-5°C to steam et 100°C
3. heat 1 i Q.
100
$$4 = mL = (21.19)(3.34 J/g) = 108884 J$$

 $G_2 = mL = (3269)(334 J/g) = 108884 J$
 $G_3 = m(\Delta T = (3269)(4.18 J/g^{\circ}C)(100^{\circ}-0^{\circ}) = 136268 J$
 $G_T = Q_2 + Q_3$
 $= 245152 J$
Q1= m($\Delta T = (21.19)(3.09 J/g^{\circ}C)(0^{\circ}-6^{\circ}) = 2.64.59 J$
 $G_2 = mL = (21.19)(3.34 J/g) = 70474.45 L double negative !
 $G_2 = mL = (21.19)(3.34 J/g) = 70474.45 L double negative !
 $G_2 = mL = (21.19)(3.34 J/g) = 70474.45 L double negative !
 $G_3 = m(\Delta T = (21.19)(3.34 J/g) = 70474.45 L double negative !
 $G_3 = m(\Delta T = (21.19)(4.18 J/g^{\circ}C)(100^{\circ}-0^{\circ}) = 8819.85 G$
 $G_4 = mL = (21.19)(2.360 J/g) = 47686 J$
 $G_7 = Q_1 + Q_2 + Q_3 + Q_4 = 163817.79 J$$$$$