N38 - Odds and Ends

- Molar heat capacities to calculate changes in heat energy with moles instead of grams.
- Heat change during a chemical reaction
- Label reaction diagrams.
- Interpret phase diagrams.
- Calorimetry for solid and liquid mixtures.

Molar Heat Capacity

Energy required to raise the temperature of one **MOLE** of a substance one degree

Q = nCΔT

*If you make sure your units cancel, this is easy!!

Molar Heat Capacity

A sample of barium chloride is increased in temperature by 3.8°C when the sample absorbed 2.4x10² J of heat energy. Calculate the <u>number of moles</u> of barium chloride if its molar heat capacity is 75.1 J/K•mol. $Q = nC\Delta T$

2.4 x 10² J = n (75.1
$$\frac{J}{K \cdot mol}$$
)(3.8 K)

n = 0.84 mol

Do we care that it is in moles and Kelvins? No! Does that change the concept of "plug and chug" and "cancel units"? No!

Heat of Reactions

Amount of energy involved in a reaction

2Al + Fe₂O₃ → 2Fe + Al₂O₃ ΔH_{rxn} =-851.5kJ (*Remember, ΔH is basically Q*) ΔH negative → exothermic → product ΔH positive → endothermic → reactant

Heat of Reactions per mole

Sometimes you want it per mole of a certain substance. Just take mole ratios into account! $2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3 \qquad \Delta H_{rxn} = -851.5 kJ$

 -851.5kJ
 1 rxn
 = -425.75 kJ

 1 rxn
 2 mol Al
 mol Al

Example Question

Calculate the energy released when 135g of aluminum are reacted in the below equation. $2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3 \qquad \Delta H_{rxn} = -851.5 kJ$

135 g Al

Example Question

Calculate the energy released when 135g of aluminum are reacted in the below equation. $2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3 \qquad \Delta H_{rxn} = -851.5kJ$

135 g Al	1 mol Al	1 rxn	-851.5 kJ	= -2130.3 kJ
	26.98g Al	2 mol Al	1 rxn	

Reaction Diagrams

Reaction Diagrams

Draw and label an ENDOTHERMIC reaction diagram.

But what is "Activation Energy?"

Activation energy:

the smallest amount of energy required for molecules to be "activated" in order to undergo a specific chemical change

- Speed them up to hit hard enough
- Proper orientation to collide in the right spot

Phase Diagrams

A graph representing the phases of a substance at a given temperature and pressure

Phase Diagrams

Triple point-

The point (temp and pressure) where solid, a liquid and gas can coexist simultaneously.

Phase Diagrams

Critical point-Above this point, gas and liquid have the same densities and have P odd combinations of properties and cannot be distinguished from each other

Supercritical Fluids!

A typical phase diagram for a substance is given below. At what point on the diagram do solid and liquid exist at equilibrium?

The phase diagram of a substance is given below. What occurs when the substance is heated from 100°C to 120°C at 3 atm pressure?

"Mixed Phase Calorimetry" When you have a mixture of solids, liquids, gases

Think About It

What happens when (in terms of heat) when you add ice to your water bottle?

Ice is absorbing, water is releasing energy...

We can still calculate Q!

Mixtures of Solids and Liquids

<u>The Problem:</u> We are going to do problems that involve a phase change AND heating. Something like you drop ice into water, what temperature will the mixture be at the end?

To solve this, think about this:

- As ice melts, the temperature does not change
- BUT as soon as the ice melts the temp will rise
- We are still using

Q_{ice}=-Q_{water}

These can get tricky...

What if you have ice at -10°C and water at 50°C?

Have to heat ice <u>AND</u> melt it <u>AND</u> heat it up a bit And also cool water down

Still have to do Q_{ice} = - Q_{water} but this time...

 $(mC\Delta T + mL + mC\Delta T) = -mC\Delta T$ Heat ice melt ice heat cold liq. cool warm liq.

Practice Problem

Let's do problem #16 from WS #7 together

16.Determine the final temperature when 18.0 g of ice at -10.0°C mixes with 275.0 grams of water at 60.0°C

16.Determine the final temperature when 18.0 g of ice at -10.0°C mixes with 275.0 grams of water at 60.0°C **Qcold = -Qwarm**

<u>Cold</u>

1) Heat ice

2) Melt ice

(3) Heat liquid

Warm

3) Cool liquid

Cold

 $Q_1 = mC\Delta T = (18g)(2.09J/gc)(0^{\circ} - 10^{\circ}) = 376.2 J$

 $Q_2 = mL = (18g)(334 J/g) = 6012 J$

 $Q_3 = mC\Delta T = (18g)(4.18J/gC)(Tf^{\circ} - 0^{\circ}) = 75.24Tf$

$$Q_{cold} = Q_1 + Q_2 + Q_3 = 6388.2 + 75.24Tf$$

<u>Warm</u>

 $Q_3 = mC\Delta T = (275g)(4.18 J/gC)(Tf^{\circ} - 60^{\circ}) =$

1149.5 – 68970Tf

16.Determine the final temperature when 18.0 g of ice at -10.0°C mixes with 275.0 grams of water at 60.0°C **Qcold = -Qwarm**

I personally like to do this because I don't see as many algebra mistakes or double negative issues!

Qcold = - Qwarm Qcold + Qwarm = 0

6388.2 + 75.24Tf + 1149.5 - 68970Tf = 0

Make sure your ending temperature is actually between the starting temps!

YouTube Link to Presentation

<u>https://youtu.be/A7z5ixKMBQs</u>