N-35 Specific Heat

How much heat can something absorb?

The amount of energy it takes to raise the temperature of 1 gram of something by 1 °C

Units:

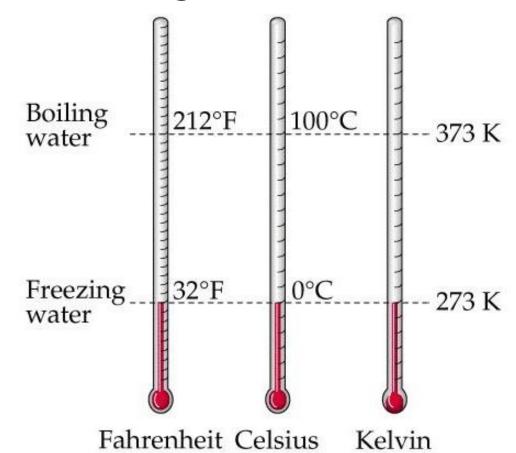
$$Q = mC\Delta T$$

C = specific heat

Q = energy lost or gained

m = mass

 ΔT = "delta" T or change in temp


$$Q = m \times C \times (T_{final} - T_{starting})$$

Little trick!

ΔT in Kelvins will be the same as ΔT in Celsius!

Because the size of "one degree" is the same for K & C.

(Wouldn't work for Fahrenheit because a Fahrenheit degree is smaller than a K or a C)

Little trick!

$$\Delta T = 50$$
°C $- 30$ °C $= A CHANGE$ of 20 degrees $\Delta T = 323 \text{ K} - 303 \text{ K} = A CHANGE}$ of 20 degrees

It doesn't mean that you are <u>at</u> a <u>TEMPERATURE</u> of 20 degrees. Big difference!
Can save you conversion time!

Positive or Negative?

Gaining Heat	Endothermic	Q = +	$\Delta T = +$
Losing Heat	Exothermic	Q = -	$\Delta T = -$

m and C are always positive

Showing your work...

Couple of choices...

- UNITS:
 - Put units IN the math equation
 - Make a list of variables and put the units there instead of in the math equation (what Mrs. Farmer likes to do)

 $5 J = (10g)(0.5 J/g^{\circ}C)(\Delta T)$

Q = 5 J m = 10g C = 0.5 J/g°C ΔT = ? 5=(10)(0.5)(ΔT)

- ALGEBRA
 - Show rearranging your problem once the numbers are in (what Mrs. Farmer likes to do)
 - Or show rearranging your equation before you put the numbers in

 $\Delta T = \frac{Q}{mc}$

 $Q = mC\Delta T$

How much heat is needed to raise the temperature of 10 grams of a substance from 40 °C to 60 °C if the specific heat is 3.8 J/g °C ?

$$Q = (10g)(3.8 \frac{J}{g^{\circ}C})(60^{\circ}C - 40^{\circ}C)$$

$$Q = 760 J$$

 $Q = mC\Delta T$

A 2 gramsample of a metal was heated

from 260 K to 300 K. It absorbed 52 J of

energy. What's the specific heat?

$$52 J = (2g)(C)(300K - 260K)$$

$$C = 0.65 \frac{J}{g^{\circ}C}$$

 $Q = mC\Delta T$

A 2 gramsample of a metal was heated

from -13°C to 27°C It absorbed 52 J of

energy. What's the specific heat?

$$52J = (2g)(C)(27^{\circ}C - 13^{\circ}C)$$

Careful about double negatives this chapter!

$$52 J = (2g)(C)(27^{\circ}C + 13^{\circ}C)$$

$$C = 0.65 \frac{J}{g^{\circ}C}$$

 $Q = mC\Delta T$

A 50 gram piece of hot metal is put into cold water. The metal transfers 5000 J of energy to the cold water. The specific heat of the metal is 6 J/g °C. What is the change in temperature of the metal?

$$-5000J = (50g)(6\frac{J}{g^{\circ}C})(\Delta T)$$

Releasing heat makes Q negative!!!

$$\Delta T = -16.67$$
°C

Temperature DECREASED by 16.67°C

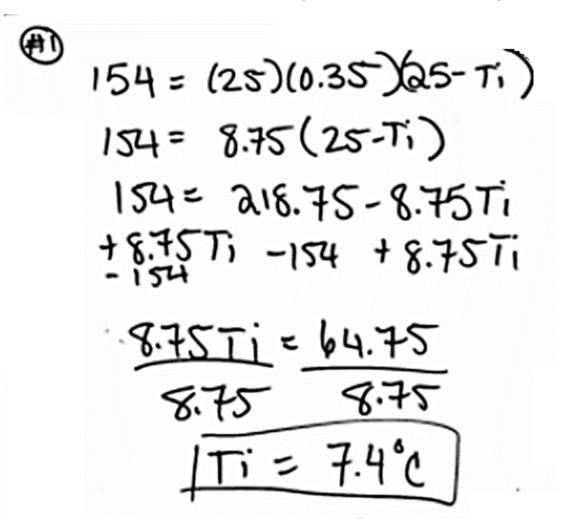
 $Q = mC\Delta T$

A 25 gram piece of cold metal is put into hot water. The metal absorbs 154 J of energy from the hot water. The specific heat of the metal is 0.35 J/g °C. What is the initial temperature of the metal if the metal ended at 25°?

$$154J = (25g)(0.35 \frac{J}{g^{\circ}C})(25^{\circ}C - T_{i})$$

$$\frac{154J}{(25g)(0.35 \frac{J}{g^{\circ}C})} = (25^{\circ}C - T_{i})$$

$$\frac{AT = T_{f} - T_{i}}{(25g)(0.35 \frac{J}{g^{\circ}C})}$$


$$T_{i} = 25^{\circ}C - \left(\frac{154J}{(25g)(0.35\frac{J}{g^{\circ}C})}\right)$$

Ti = 7.4 °C

Careful with algebra! Don't be too lazy to actually show steps so you don't make silly mistakes! MOST commonly missed type of question for silly algebra mistakes!

Options for your Algebra!

I don't care what you do...just do it right!

Could distribute first if you want!

Options for your Algebra!

I don't care what you do...just do it right!

$$\begin{array}{ll}
(4a) & 154 = (25)(0.35)(25-Ti) \\
(25)(0.35) & (25)(0.35)
\end{array}$$

$$\begin{array}{ll}
(7.6 = 25-Ti) \\
+Ti \\
-17.6 & -17.6
\end{array}$$

$$\begin{array}{ll}
T_1 = 7.4°C$$

Could simplify as you go if you want!

Options for your Algebra!

I don't care what you do...just do it right!

#3
$$154=(25)(0.35)(\Delta T)$$

 $(25)(0.35)(25)(0.35)$
 $17.6 = \Delta T$
 $17.6 = 25-T;$
 $+T;$
 $+T;$
 $-17.6 = -17.6$
 $1T_1 = 7.4°($

Could solve for ∆T first and then figure out Ti at the end if you want.

CAREFUL - This way wont work for more complex "calorimetry" problems. Ok for simple problems.

YouTube Link to Presentation

https://youtu.be/h81y8n4ge-0