ICE Table Practice Problem #2 In the following reaction, $K_{eq} = 9.3 \times 10^{-7}$ at room temp. Calculate the equilibrium concentration of N2O4 in a flask initially containing only 3.00 M of NO₂ $$2 \text{ NO}_{2(g)} \rightarrow \text{N}_2\text{O}_{4(g)}$$ | Rxn | 2 NO _{2(g)} | N ₂ O _{4(g)} | |--------|----------------------|---| | I | | | | С | | | | E | | | | 5% | | | | Answer | | | ## **ICE Table Practice Problem #2** In the following reaction, $K_{eq} = 9.3 \times 10^{-7}$ at room temp. Calculate the equilibrium concentration of N2O4 in a flask initially containing only 3.00 M of NO₂ $$2 \text{ NO}_{2(g)} \rightarrow \text{N}_2\text{O}_{4(g)}$$ | Rxn | 2 NO₂(g) → | N ₂ O _{4(g)} | |--------|------------|----------------------------------| | I | | | | С | | | | E | | | | 5% | | | | Answer | | | ## **ICE Table Practice Problem #2** In the following reaction, $K_{eq} = 9.3 \times 10^{-7}$ at room temp. Calculate the equilibrium concentration of N2O4 in a flask initially containing only 3.00 M of NO₂ $$2 \text{ NO}_{2(g)} \rightarrow \text{N}_2\text{O}_{4(g)}$$ | Rxn | 2 NO₂(g) → | N ₂ O _{4(g)} | |--------|------------|----------------------------------| | I | | | | С | | | | E | | | | 5% | | | | Answer | | | ## **ICE Table Practice Problem #2** In the following reaction, $K_{eq} = 9.3 \times 10^{-7}$ at room temp. Calculate the equilibrium concentration of N2O4 in a flask initially containing only 3.00 M of NO₂ $$2 \text{ NO}_{2(g)} \rightarrow \text{N}_2\text{O}_{4(g)}$$ | Rxn | 2 NO _{2(g)} - | N ₂ O _{4(g)} | |--------|------------------------|----------------------------------| | I | | | | С | | | | E | | | | 5% | | | | Answer | | |