Dougherty Valley HS Chemistry Equilibrium – ICE Tables

Name:

Seat#:

Worksheet #6

Directions:

- Answer these on binder paper!
- The first couple problems are "chunked" for you to help you think through the steps.
- For ICE Table Problems, show your ICE Table and any algebra.
- If assuming the 5% rule, show that you checked that it was a valid assumption at the end.
 - Remember can only use 5% rule if K < 1
 - And usually K = 1000x smaller than initial []'s is a better guess of when to use it
 - If $\frac{x}{initial[]} x 100 < 5\%$ then it is a valid assumption
- If 5% rule turns out not valid, then show your algebra or quadratic equation calculation
 For quadratic equation make sure to indicate which answer for x is valid.
 - For all other questions show calculations or give explanations when appropriate.
- Some answers are provided at the end. They are underlined.
- **1)** For the reaction, $A \leftrightarrow 2B$, Kc = 2.
 - Suppose 3.0 moles of B and 3.0 moles of A are introduced into a 2.00 L flask.
 - a. Calculate the [A] and [B]
 - b. Is this system at equilibrium? Justify with showing a calculation.
 - c. In which direction will the reaction proceed to reach equilibrium?
 - d. As the system moves towards equilibrium what happens to the []'s of each chemical, increase or decrease?
- 2) $N_2(g) + O_2(g) \leftrightarrow 2 \text{ NO}(g)$ The initial $[N_2] = 0.80 \text{ M}$ and the initial $[O_2] = 0.20 \text{ M} \text{ Kc} = 1.0 \times 10^{-5}$
 - a. Based on the information given, and not doing any calculation, which direction does the reaction have to proceed to reach equilibrium? Explain your answer.
 - b. Looking at the size of the Kc value, and the initial concentrations, do you predict that the 5% rule will be a valid assumption? Show why you think yes or no.
 - c. Calculate the equilibrium concentrations for the reaction. $[N_2] = 0.8M$, $[O_2] = 0.2M$, [NO] = 1.26E-3M
- 3) $2NO_2 \leftrightarrow 2NO + O_2$ If 0.50 mol of NO₂ is placed in a 2.0L flask to create NO and O₂ Keq = 1.2×10^{-5} a. Calculate the [NO₂]
 - b. Which way will the reaction proceed, right or left?
 - c. As the system moves towards equilibrium what happens to the []'s of each chemical, increase or decrease?
 - d. Looking at the size of the Kc value, and the initial concentrations, do you predict that the 5% rule will be a valid assumption? Show why you think yes or no.
 - e. Calculate all the concentrations of each chemical once it reaches equilibrium. $[NO_2] = 0.25M$, [NO] = 0.0114M, $[O_2] = 0.00572M$
- 4) Calculate the equilibrium concentrations of all species if 3.000 moles of H₂ and 6.000 moles of F₂ are placed in a 3.000 L container. H₂(g) + F₂(g) \leftrightarrow 2HF(g), Kc = 1.15 x 10⁻³ [H₂] = 1M. [F₂] = 2M. [HF] = 0.048M
- 5) At 650°C, the reaction below has a K_{eq} value of 0.771. If 2.00 mol of both hydrogen and carbon dioxide are placed in a 4.00 L container and allowed to react, what will be the equilibrium concentrations of all four gases? [H₂] = 0.266M, [CO₂] = 0.266M, [CO₁] = 0.234M, [H₂O₁] = 0.234M

$$H_{2}(g)$$
 + $CO_{2}(g)$ \leftrightarrow $CO(g)$ + $H_{2}O(g)$

- 6) $2HI \leftrightarrow H_2 + I_2$ Keq = 0.016. The system starts with 0.010 M H₂ and I₂ and 0.096 M of HI
 - a. Is this system at equilibrium? Justify with showing a calculation.
 - b. In which direction will the reaction proceed to reach equilibrium?
 - c. As the system moves towards equilibrium what happens to the []'s of each chemical, increase or decrease
 - d. Calculate all the concentrations of each chemical once it reaches equilibrium. [HI] = 0.0925M, [H₂] = 0.01175M, [I₂] = 0.01175M
- 7) 3.00 moles of N₂ gas and 1.00 mole of H₂ gas are combined in a 1 L reaction vessel. At equilibrium 0.663 moles of H₂ remain. N₂ + 3H₂ ↔ 2NH₃
 - a. What are the resulting concentrations? $[N_2] = 2.89M$, $[H_2] = 0.663M$, $[NH_3] = 0.224M$
 - b. What is the value of the equilibrium constant at this particular temperature? Keq = .0596
- 8) Careful! There is something tricky about this problem! ☺ Find the equilibrium constant, Keq, for the following equilibrium situation. The initial concentrations of AB and A₂D are 0.30 M before they are mixed and when equilibrium is reached, the equilibrium concentration of A₂D is 0.20 M. Keq = 1.25

 $2 \text{ AB}_{(g)} + C_2 D_{(s)} \leftrightarrow A_2 D_{(g)} + 2 \text{ CB}_{(s)}$

- **9)** At a particular temperature, Phosphorus pentachloride decomposes into Phosphorous trichloride and Chlorine gas. 0.500 moles of pure Phosphorus pentachloride is placed in a 2.00 L bottle and 0.7 M is the concentration of the chlorine gas in the same bottle. What are the resulting concentrations if the equilibrium constant at this particular temperature is $Kc = 6.5 \times 10^{-4}$? [PCI₅] = 0.25M, [PCI₃] = 2.32E-4M, [CI₂] = 0.7M
- 10) *NOT REQUIRED* an extra one that has a quadratic equation in case you feel like you want to practice this kind. If you complete this and get it right I will give you some tickets [©] 2HI ↔ H₂ + I₂ If Kp = 50.5 and the initial pressures are HI = 0.975 atm, H₂ = 0.105 atm and I₂ = 0.215 atm, what are the equilibrium pressures for all the substances?