	Makes the solu	ıtion
Acidic + Neutral	Acidic	
Basic + Neutral	Basic	
Neutral + Neutral	Neutral	
	Compare Ka and Kb to determine which "wins"	
Acidic + Basic	Ka _(ion) > Kb _(ion)	Acidic
	Ka _(ion) < Kb _(ion)	Basic
	Ka _(ion) = Kb _(ion)	Neutral

Remember: Kw = Ka x Kb

Remember: $Kw = Ka \times Kb$

 $Ka_{\{acidic\ ion\}} = \frac{Kw}{Kb\ (of\ where\ ion\ came\ from)}$

 $\mathsf{Kb}_{(\mathsf{basic}\;\mathsf{ion})} = \frac{\mathit{Kw}}{\mathit{Ka}\;(\mathit{of}\;\mathit{where}\;\mathit{ion}\;\mathit{came}\;\mathit{from})}$

 $Ka_{\{acidic\ ion\}} = \frac{Kw}{Kb\ (of\ where\ ion\ came\ from)}$

 $Kb_{(basic\ ion)} = \frac{Kw}{Ka\ (of\ where\ ion\ came\ from)}$

	Makes the solu	ıtion
Acidic + Neutral	Acidic	
Basic + Neutral	Basic	
Neutral + Neutral	Neutral	
	Compare Ka and Kb to determine which "wins"	
Acidic + Basic	Ka _(ion) > Kb _(ion)	Acidic
	Ka _(ion) < Kb _(ion)	Basic
	Ka _(ion) = Kb _(ion)	Neutral
Damasakan Ku Kau Kh		

Remember: $Kw = Ka \times Kb$

 $Ka_{(acidic\ ion)} = \frac{Kw}{Kb\ (of\ where\ ion\ came\ from)}$

 $\mathsf{Kb}_{(\mathsf{basic\ ion})} = \frac{\mathit{Kw}}{\mathit{Ka\ (of\ where\ ion\ came\ from)}}$

	Makes the solution	
Acidic + Neutral	Acidic	
Basic + Neutral	Basic	
Neutral + Neutral	Neutral	
Acidic + Basic	Compare Ka and Kb to determine which "wins"	
	$Ka_{(ion)} > Kb_{(ion)}$	Acidic
	Ka _(ion) < Kb _(ion)	Basic
	$Ka_{(ion)} = Kb_{(ion)}$	Neutral
Remember: Kw = Ka x Kb		
Ka(-a:dia iaa) =	Kw	

 $Ka_{(acidic ion)} = \frac{Kw}{Kb (of where ion came from)}$

 $\mathsf{Kb}_{(\mathsf{basic\ ion})} = \frac{\mathit{Kw}}{\mathit{Ka\ (of\ where\ ion\ came\ from)}}$

	Makes the solution	
Acidic + Neutral	Acidic	
Basic + Neutral	Basic	
Neutral + Neutral	Neutral	
Acidic + Basic	Compare Ka and Kb to determine which "wins"	
	Ka _(ion) > Kb _(ion)	Acidic
	Ka _(ion) < Kb _(ion)	Basic
	$Ka_{(ion)} = Kb_{(ion)}$	Neutral

_	Makes the solution	
Acidic + Neutral	Acidic	
Basic + Neutral	Basic	
Neutral + Neutral	Neutral	
Acidic + Basic	Compare Ka and Kb to determine which "wins"	
	Ka _(ion) > Kb _(ion)	Acidic
	Ka _(ion) < Kb _(ion)	Basic
	Ka _(ion) = Kb _(ion)	Neutral
Remember: Kw = Ka x Kb		
$Ka_{(acidic\ ion)} = \frac{Kw}{Kb\ (of\ where\ ion\ came\ from)}$		
$Kb_{(basic\ ion)} = \frac{Kw}{Ka\ (of\ where\ ion\ came\ from)}$		

	Makes the solution	
Acidic + Neutral	Acidic	
Basic + Neutral	Basic	
Neutral + Neutral	Neutral	
Acidic + Basic	Compare Ka and Kb to determine which "wins"	
	$Ka_{(ion)} > Kb_{(ion)}$	Acidic
	Ka _(ion) < Kb _(ion)	Basic
	$Ka_{(ion)} = Kb_{(ion)}$	Neutral
Remember: Kw = Ka x Kb		

 $Ka_{(acidic\ ion)} = \frac{Kw}{Kb\ (of\ where\ ion\ came\ from)}$

 $\mathsf{Kb}_{(\mathsf{basic}\;\mathsf{ion})} = \frac{\mathit{Kw}}{\mathit{Ka}\;(\mathit{of}\;\mathit{where}\;\mathit{ion}\;\mathit{came}\;\mathit{from})}$