Dougherty Valley HS Chemistry Nuclear Basics and Equations

Name:

Worksheet #2

Period:

Seat#:

1)	A positively charged particle made up of two protons and two neutrons and released by a radioactive nucleus is the:	2)	An electron released by a radioactive nucleus that causes a neutron to change into a proton is called a	3)	The amount of time for half the atoms in a radioactive sample to decay is called
4)	The process in which the nuclei of unstable atoms can become more stable by emitting particles and/or electromagnetic radiation is called	5)	High-energy electromagnetic radiation released by a radioactive nucleus is called	6)	What kind of decay is the breaking up of a radioactive element, more often than not resulting in the formation of a new nucleus.
7)	What is it called when an atom is changed into another kind of atom that takes place during radioactive decay.	8)	Is Alpha radiation a stream of positively or negatively charged particles?	9)	Is Beta radiation a stream of positively or negatively charged particles?
10)	Whenever an element undergoes decay it turns into another element with an atomic number two less than before and mass number four less than before.	11)	Whenever an element undergoes decay, a neutron in the nucleus decays into a proton, an electron, and a neutrino.	12)	Circle one: The more stable a nucleus is, the <i>longer shorter</i> its half-life will be.
13)	Which type of radioactive decay can be stopped with a piece of paper?	14)	Which type of radioactive decay can be stopped with a thin metal sheet?	15)	Which type of radioactive decay can be stopped with a thick metal sheet?
16)	Which type of radioactive decay travels at the speed of light?	17)	Which type of radioactive decay is not affected by a magnetic field because it carries no charge?	18)	An alpha particle is actually a nucleus of:
19)	Where do beta particles originate from in the atom?	20)	Radioactive decay processes occur until a Element is formed	21)	True or false? The half-life of a given isotope can be altered by heat, pressure, or some other physical means.

Fill in the missing symbol and identify the type of decay taking place.

	Reaction	Type of Decay
1	$_{1}^{3}H \rightarrow \underline{\qquad} + _{-1}^{0}e$	
2	$^{232}_{92}U \rightarrow ^{228}_{90}Ra + _$	
3	$^{144}_{58}Ce \rightarrow ^{144}_{59}Pr + ___$	
4	$_{30}^{65}Zn \rightarrow \underline{\qquad} + _{+1}^{0}e$	
5	$^{40}_{19}K \rightarrow ^{40}_{18}Ar + ^{0}_{+1}e$	
6	${}^{7}_{4}Be \xrightarrow{\bullet} {}^{7}_{4}Be + _$	
7	${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{236}_{92}U^{*} \rightarrow {}^{141}_{55}Cs + __+3{}^{1}_{0}n$	
8	$^{222}_{86}$ Rn \rightarrow + $^{4}_{2}$ He	
9	¹²⁹ ₅₃ I→ ¹²⁹ ₅₄ Xe +	
10	${}^{1}_{1}H + {}^{1}_{1}H \rightarrow \underline{\qquad} + {}^{0}_{+1}e$	
11	$^{239}_{94}Pu \rightarrow \underline{\qquad} + ^{4}_{2}He$	
12	$^{15}_{8}O \rightarrow ^{15}_{7}N + _$	

Write and/or complete the following transmutations, fission and fusion reactions.

1) Neutron initiated fission of U-235 releases 2 neutrons, forms Cs-144 and another nucleus.

- **2)** Bombardment of CI-35 with a neutron produces a sulfur-34 nucleus and another particle.
- **3)** Neutron initiated fission of U-235 releases 4 β particles, forms Sr-90 and releases another nucleus.
- **4)** Neutron initiated fission of U-235 releases 3 neutrons, one β, forms Br-87 and another nucleus.
- 5) Neutron initiated fission of Pu-239 gives three neutrons, La-145 and another nucleus.
- 6) Two tritium nuclei are fused to produce 2 neutrons and another nucleus.
- 7) An H-1 nucleus (protium) and a Li-7 nucleus are fused to produce He-4.
- 8) Tritium and deuterium are fused to produce a neutron and a new nucleus.
- 9) Bombardment of U-238 with C-12 produces an isotope of element 98 and 4 identical particles.