Important Points to Know

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- All Carbon ends up in the CO₂
- All Hydrogen ends up in the H₂O
- Oxygen has to be found by subtracting since it ends up in multiple places
- Other elements like nitrogen must be found by doing a separate experiment
- Must know the mass of the unknown substance before burning it
- The unknown will be burnt in pure oxygen, present in large excess
- The amount of oxygen will be determined by subtraction.
- The combustion products always have CO₂ and H₂O. Might have extra products if other elements are present!
- Nitrogen product can come in different forms. N₂, NH₃, etc. Will be given more info if needed.
 Often given as a separate experiment – will need to convert all to %'s if this is the case!
 Nitrogen is the problem child in combustion analysis.
- All the carbon winds up as CO₂ and all the hydrogen winds up as H₂O.

Important Points to Know

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- All Carbon ends up in the CO₂
- All Hydrogen ends up in the H₂O
- Oxygen has to be found by subtracting since it ends up in multiple places
- Other elements like nitrogen must be found by doing a separate experiment
- Must know the mass of the unknown substance before burning it
- The unknown will be burnt in pure oxygen, present in large excess
- The amount of oxygen will be determined by subtraction.
- The combustion products always have CO₂ and H₂O. Might have extra products if other elements are present!
- Nitrogen product can come in different forms. N₂, NH₃, etc. Will be given more info if needed.
 Often given as a separate experiment – will need to convert all to %'s if this is the case!
 Nitrogen is the problem child in combustion analysis.
- All the carbon winds up as CO₂ and all the hydrogen winds up as H₂O.

Important Points to Know

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- All Carbon ends up in the CO₂
- All Hydrogen ends up in the H₂O
- Oxygen has to be found by subtracting since it ends up in multiple places
- Other elements like nitrogen must be found by doing a separate experiment
- Must know the mass of the unknown substance before burning it
- The unknown will be burnt in pure oxygen, present in large excess
- The amount of oxygen will be determined by subtraction.
- The combustion products always have CO₂ and H₂O. Might have extra products if other elements are present!
- Nitrogen product can come in different forms. N₂, NH₃, etc. Will be given more info if needed. Often given as a separate experiment – will need to convert all to %'s if this is the case! Nitrogen is the problem child in combustion analysis.
- All the carbon winds up as CO₂ and all the hydrogen winds up as H₂O.

Important Points to Know

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- All Carbon ends up in the CO₂
- All Hydrogen ends up in the H₂O
- Oxygen has to be found by subtracting since it ends up in multiple places
- Other elements like nitrogen must be found by doing a separate experiment
- Must know the mass of the unknown substance before burning it
- The unknown will be burnt in pure oxygen, present in large excess
- The amount of oxygen will be determined by subtraction.
- The combustion products always have CO₂ and H₂O. Might have extra products if other elements are present!
- Nitrogen product can come in different forms. N₂, NH₃, etc. Will be given more info if needed.
 Often given as a separate experiment – will need to convert all to %'s if this is the case!
 Nitrogen is the problem child in combustion analysis.
- All the carbon winds up as CO₂ and all the hydrogen winds up as H₂O.

Important Points to Know

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- All Carbon ends up in the CO₂
- All Hydrogen ends up in the H₂O
- Oxygen has to be found by subtracting since it ends up in multiple places
- Other elements like nitrogen must be found by doing a separate experiment
- Must know the mass of the unknown substance before burning it
- The unknown will be burnt in pure oxygen, present in large excess
- The amount of oxygen will be determined by subtraction.
- The combustion products always have CO₂ and H₂O. Might have extra products if other elements are present!
- Nitrogen product can come in different forms. N₂, NH₃, etc. Will be given more info if needed.
 Often given as a separate experiment – will need to convert all to %'s if this is the case!
 Nitrogen is the problem child in combustion analysis.
- All the carbon winds up as CO₂ and all the hydrogen winds up as H₂O.

Important Points to Know

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- All Carbon ends up in the CO₂
- All Hydrogen ends up in the H₂O
- Oxygen has to be found by subtracting since it ends up in multiple places
- Other elements like nitrogen must be found by doing a separate experiment
- Must know the mass of the unknown substance before burning it
- The unknown will be burnt in pure oxygen, present in large excess
- The amount of oxygen will be determined by subtraction.
- The combustion products always have CO₂ and H₂O. Might have extra products if other elements are present!
- Nitrogen product can come in different forms. N₂, NH₃, etc. Will be given more info if needed.
 Often given as a separate experiment – will need to convert all to %'s if this is the case!
 Nitrogen is the problem child in combustion analysis.
- All the carbon winds up as CO₂ and all the hydrogen winds up as H₂O.