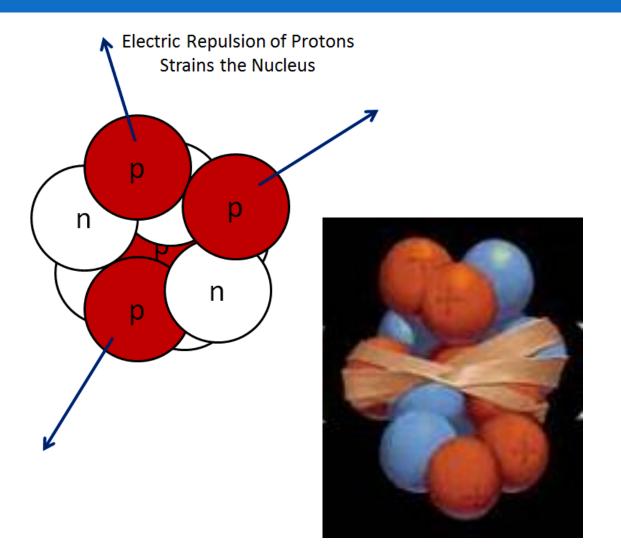
N6 – Intro to the Nucleus


Target: I can describe how the nucleus can change to become more stable if needed.

Not all atoms are stable!

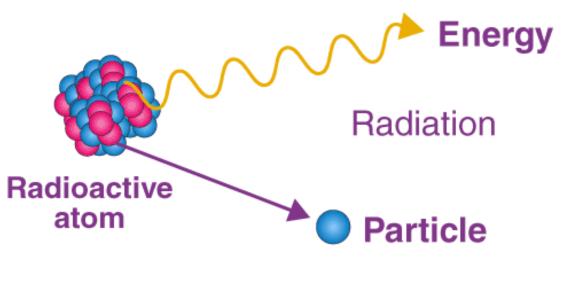
- Sometimes the nucleus of an atom is unstable and cannot stay together.
- □ This is called being **radioactive**.

What keeps nuclei together normally?

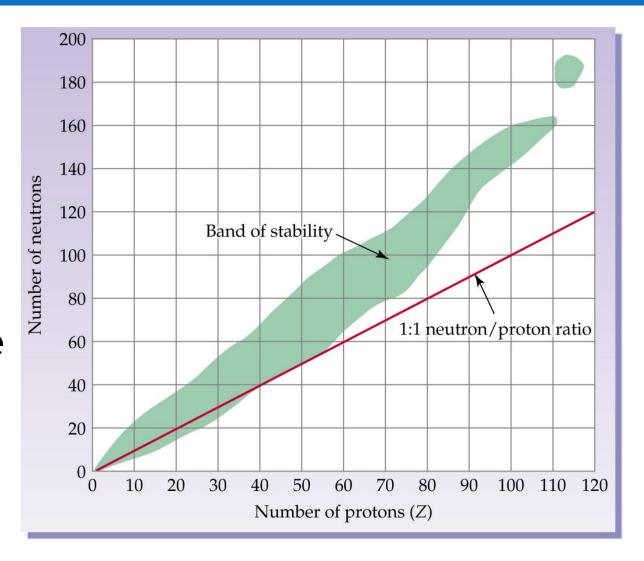
□ STRONG FORCE -Holds the nucleus together, even though the protons want to repel each other.

Why do nuclei come apart sometimes?

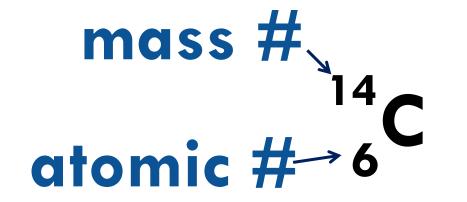
Too many neutrons!


- □ Strong force won't be strong enough.
- Like a rubber band that is stretched too far...it will break!

What happens when it comes apart?


Radiation!

- Particles and energy come flying out of the nucleus at high speeds/energies
- Radioactivity is these particles being released


Band of Stability and Island of Stability

Neutron : Proton
ratio larger than
1:1 makes it more
likely to be
unstable, radioactive

Nuclear Atomic Symbols

□ We will be writing our symbols like this:

Remember...to find # of neutrons, subtract mass # - atomic #

Chemical Reactions	Nuclear Reactions
Occur when bonds	Occur when nuclei
are broken	emit particles and/or
	rays

Nuclear Reactions
Occur when nuclei emit particles and/or rays
Atoms often
converted into atoms
of another element

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Atoms remain unchanged, although they may be rearranged	Atoms often converted into atoms of another element
Involve only valence	May involve protons,
electrons	neutrons, and
	electrons

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Atoms remain unchanged, although they may be rearranged	Atoms often converted into atoms of another element
Involve only valence electrons	May involve protons, neutrons, and electrons
Associated with small	Associated with
energy changes	large energy
	changes

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Atoms remain unchanged, although they may be rearranged	Atoms often converted into atoms of another element
Involve only valence electrons	May involve protons, neutrons, and electrons
Associated with small energy changes	Associated with large energy changes
Reaction rate influenced	Reaction rate is not
by temperature,	influenced by
particle size,	temperature, particle
concentration, etc.	size, concentration, etc.

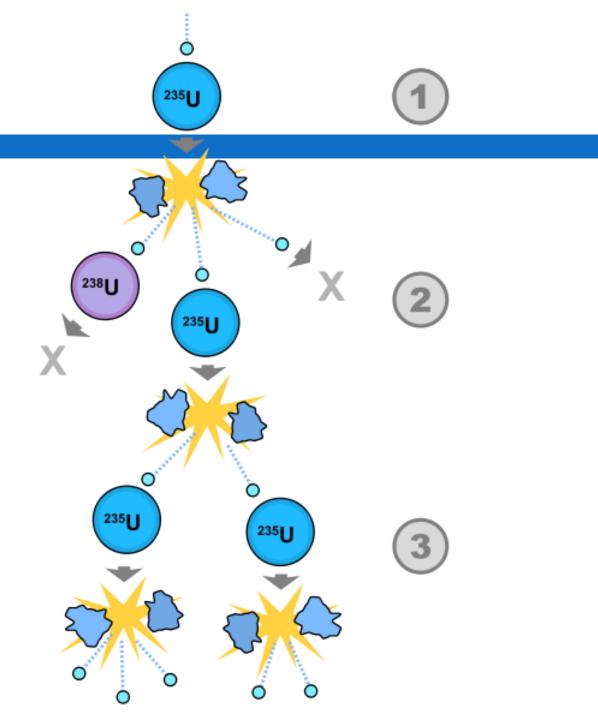
Nuclear Reactions

Isotopes of one element are changed into isotopes of another element

Contents of the nucleus change
Large amounts of energy released

Uses of Nuclear Reactions

- Uncontrolled reactions are dangerous, but when used properly they can be useful!
- Power plants
- Tracking chemical reactions and biological processes
- Radiation therapy for cancer
- Determining the age of dead plants/animals, or even rocks.


Nuclear Fission

Splitting of a nucleus

Chain Rxn – one released particle sets off another atom, keeps happening

Nuclear Reactor – controlled situation, energy released slowly

Nuclear Fission

Nuclear Fission (don't need to write this)

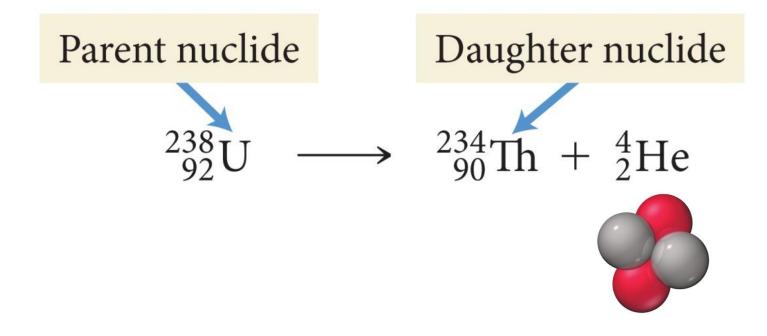
1st controlled nuclear reaction in December 1942.

- 1st uncontrolled nuclear explosion occurred July 1945.
- Examples atomic bomb, current nuclear power plants

Nuclear Fusion

- **Combining nuclei**
- Doesn't normally happen (+ and + repel)
- Pros Inexpensive, no radioactive waste
- Cons Hard to control, large startup energy
- Examples stars, hydrogen bomb, future nuclear power plants

Nuclear Stability


Very Stable	Marginally Stable	Unstable/Radioactive

Nuclear Stability

Very Stable	Marginally Stable	Unstable/Radioactive
Atomic #s 1-20	Atomic #s 21-82	Atomic #s > 82
1:1 ratio	1:1.5 ratio	> 1:1.5 ratio
Protons : Neutrons	Protons : Neutrons	Protons : Neutrons
Example:	Example:	Example:
Carbon-12	Mercury-200	Uranium
6p : 6n	80p : 120n	Plutonium

Type of Decay: Alpha Decay

 Nucleus emits a particle made of two protons and two neutrons – like a helium nucleus (not a helium atom, because it doesn't have any e⁻)

Alpha radiation

Composition	Symbol	Charge	Mass
helium nuclei	⁴ ₂ He, α	+2	4amu
Shielding	Approx. Energy	Penetrating power	
Paper,		Lov	V
clothing	5 MeV	0.05mm body tissue	

Type of Decay - Beta Decay

 Neutron is split into a proton an a "beta particle" which is like an electron

$$^{228}_{88}$$
Ra $\longrightarrow ^{228}_{89}$ Ac + $_{-1}^{0}$ e

Beta radiation

Composition	Symbol	Charge	Mass
Same as an electron	e⁻, β	-1	1/1837 th (basically 0)
Shielding	Approx. Energy	Penetrating power	
Aluminum foil	0.05-1MeV	Moderate 4mm body tissue	

Type of Decay - Positron

- Proton splits into a neutron and a positron.
- Like a beta particle, but has a charge of +1

$$^{30}_{15}P \longrightarrow ^{30}_{14}Si + ^{0}_{+1}e$$

Type of Decay - Gamma Emission

- High energy photons.
- No loss of particles from the nucleus
- Usually after the nucleus undergoes some other type of decay and the remaining particles rearrange

$$^{238}_{92}U^* \longrightarrow ^{234}_{90}Th + ^{4}_{2}He + ^{0}_{0}\gamma$$

Composition	Symbol	Charge	Mass
High energy electromagnetic radiation	γ	0	0
Shielding	Approx. Energy	Penetrating power	
Lead,		High	
Concrete	1MeV	Penetrates easily	

YouTube Link to Presentation

<u>https://youtu.be/LrCO_eciSLQ</u>