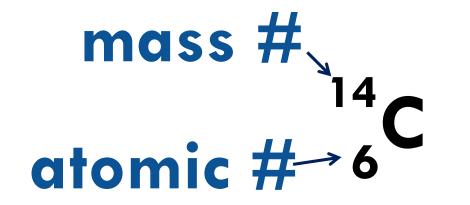
N7 - Nuclear Chemistry

Target: I can describe different types of radioactive decay, and can write nuclear equations to show how the decay reactions take place.



Introduction to Nuclear Chemistry

The study of the structure of atomic nuclei and the changes they undergo.

Nuclear Atomic Symbols You already know this, don't write

□A chemical symbol looks like...

Remember...to find # of neutrons, subtract mass # - atomic #

Chemical Reactions	Nuclear Reactions
Occur when bonds	Occur when nuclei
are broken	emit particles and/or
	rays

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Atoms remain	Atoms often
unchanged, although	converted into atoms
they may be	of another element
rearranged	

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Atoms remain unchanged, although they may be rearranged	Atoms often converted into atoms of another element
Involve only valence	May involve protons,
electrons	neutrons, and
	electrons

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Atoms remain unchanged, although they may be rearranged	Atoms often converted into atoms of another element
Involve only valence electrons	May involve protons, neutrons, and electrons
Associated with small	Associated with
energy changes	large energy
	changes

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Atoms remain unchanged, although they may be rearranged	Atoms often converted into atoms of another element
Involve only valence electrons	May involve protons, neutrons, and electrons
Associated with small energy changes	Associated with large energy changes
Reaction rate influenced	Reaction rate is not
by temperature,	influenced by
particle size,	temperature, particle
concentration, etc.	size, concentration, etc.

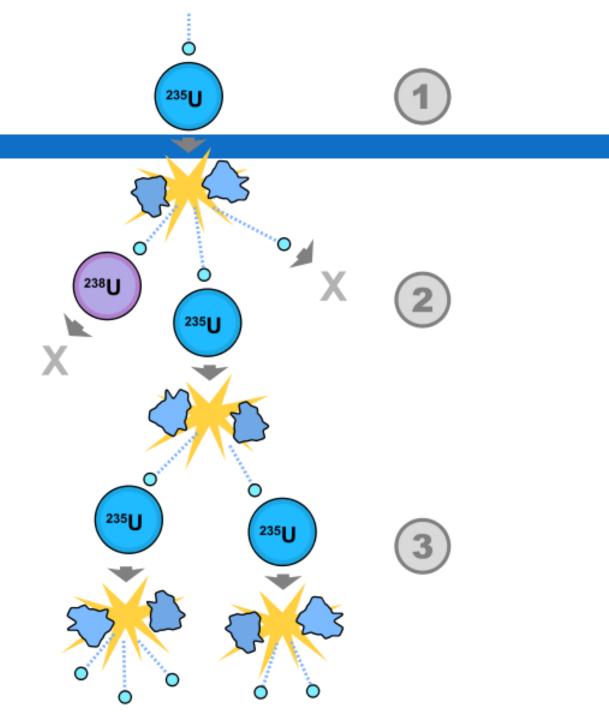
Nuclear Reactions

Isotopes of one element are changed into isotopes of another element

Contents of the nucleus change
 Large amounts of energy released

Uses of Nuclear Reactions

- Uncontrolled reactions are dangerous, but when used properly they can be useful!
- Power plants
- Tracking chemical reactions and biological processes
- Radiation therapy for cancer
- Determining the age of dead plants/animals, or even rocks.


Nuclear Fission

Splitting of a nucleus

Chain Rxn – one released particle sets off another atom, keeps happening

Nuclear Reactor – controlled situation, energy released slowly

Nuclear Fission

Nuclear Fission (don't need to write this)

□<u>1st controlled</u> nuclear reaction in December 1942.

□<u>1st uncontrolled</u> nuclear explosion occurred July 1945.

Examples – atomic bomb, current nuclear power plants

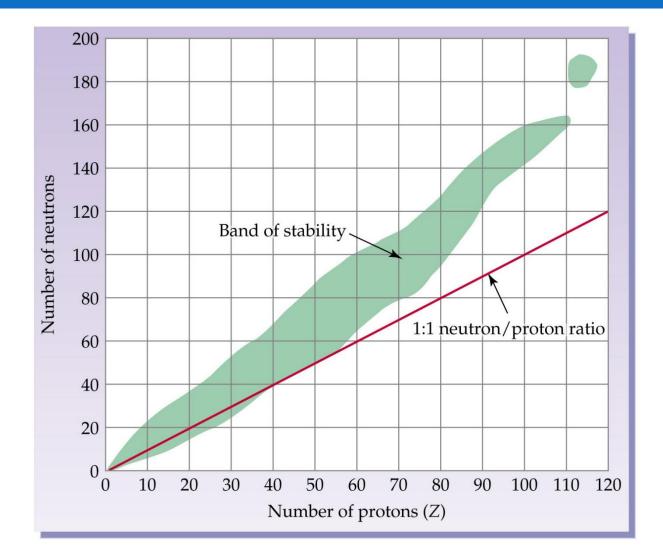
Nuclear Fusion

- **Combining nuclei**
- Doesn't normally happen (+ and + repel)
- Pros Inexpensive, no radioactive waste
- Cons Hard to control, large startup energy
- Examples stars, hydrogen bomb, future nuclear power plants

Nuclear Stability

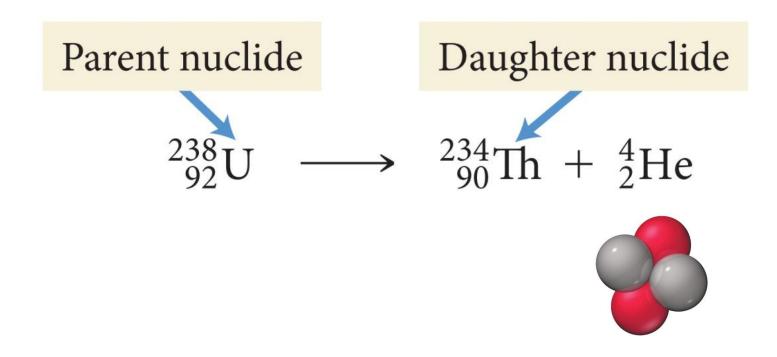

Very Stable	Marginally Stable	Unstable/Radioactive

Nuclear Stability

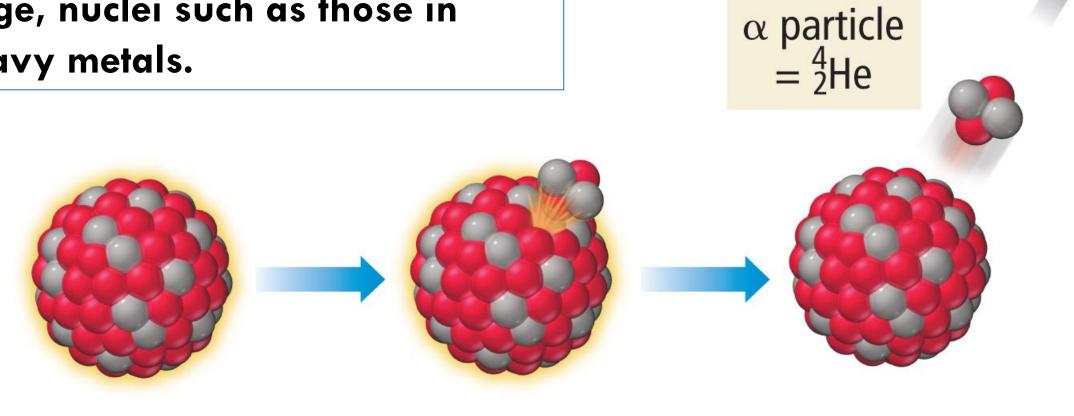

Very Stable	Marginally Stable	Unstable/Radioactive
Atomic #s 1-20	Atomic #s 21-82	Atomic #s > 82
1:1 ratio	1:1.5 ratio	> 1:1.5 ratio
Protons : Neutrons	Protons : Neutrons	Protons : Neutrons
Example:	Example:	Example:
Carbon-12	Mercury-200	Uranium
6p : 6n	80p : 120n	Plutonium

<u>What keeps nuclei together?</u> <u>Why do they fall apart?</u>

- STRONG FORCE! Holds the nucleus together, even though the protons want to repel each other.
- Too many neutrons? Strong force wont be strong enough, like a rubber band that :stretched too far...it will break!
 - When it breaks, particles come flying out of the nucleus!
- Too many neutrons = radioactive!



Band of Stability and Island of Stability

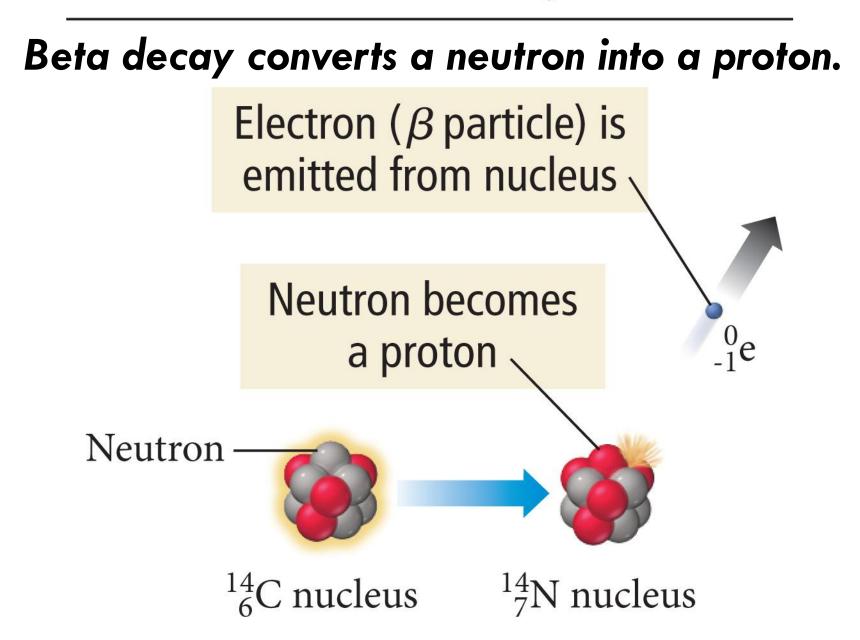

Type of Decay: Alpha Decay

• When an unstable nucleus emits a particle composed of two protons and two neutrons

Alpha Decay

Alpha decay is limited to VERY large, nuclei such as those in heavy metals.

Alpha radiation


Composition	Symbol	Charge	Mass
helium nuclei	⁴ ₂ He, α	+2	4amu
Shielding	Approx. Energy	Penetrating power	
Paper,		MeV Low 0.05mm body tissue	
clothing	J /V\eV		

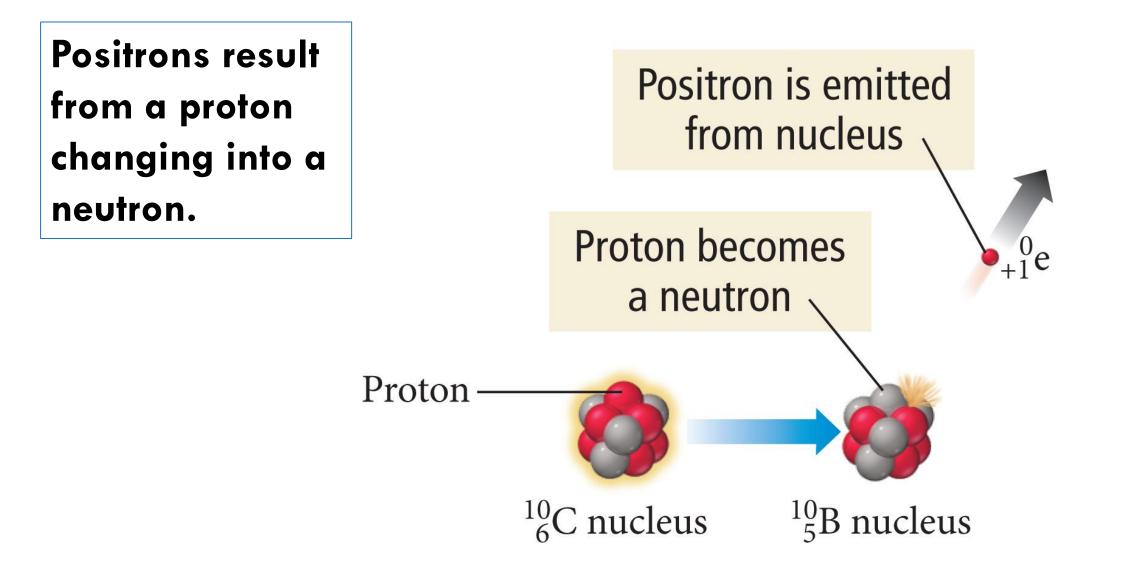
Type of Decay - Beta Decay

• When an unstable nucleus emits an electron

$$^{228}_{88}\text{Ra} \longrightarrow ^{228}_{89}\text{Ac} + ^{0}_{-1}\text{e}$$

Beta Decay

Beta radiation


Composition	Symbol	Charge	Mass
Same as an electron	e⁻, β	-1	1/1837 th (basically 0)
Shielding	Approx. Energy	Penetrating power	
Aluminum foil	0.05-1MeV	Moderate 4mm body tissue	

Type of Decay - Positron Emission

• Like a beta particle, but has a charge of +1

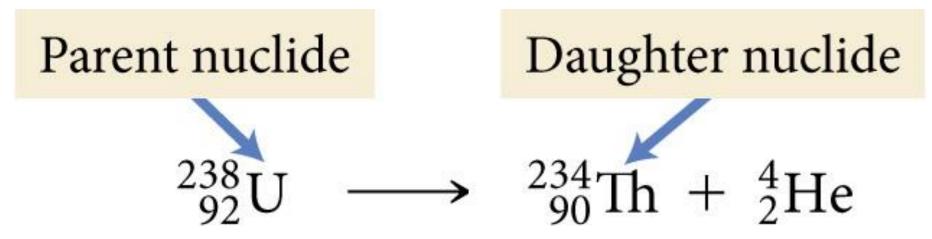
$$^{30}_{15}P \longrightarrow ^{30}_{14}Si + ^{0}_{+1}e$$

Positron Emission

Type of Decay - Gamma Emission

- High energy photons.
- No loss of particles from the nucleus
- Usually after the nucleus undergoes some other type of decay and the remaining particles rearrange

$$^{238}_{92}U^* \longrightarrow ^{234}_{90}Th + ^{4}_{2}He + ^{0}_{0}\gamma$$


Gamma radiation

Composition	Symbol	Charge	Mass
High energy electromagnetic radiation	γ	0	0
Shielding	Approx. Energy	Penetrating power	
Lead,		High	
Concrete	1MeV	Penetrates easily	

PART 2 – BALANCED NUCLEAR EQUATIONS

Nuclear Equations

- Mass numbers and atomic numbers are **conserved**.
- We can use this fact to determine the identity of a daughter nuclide if we know the parent and type of decay.

Step 1: Write the element that you are starting with.

Mass # 210 84 PO

Atomic #

Step 2: Draw the arrow.

Mass # 210 84 Po →

Atomic #

Step 3: Write the alpha particle.

Atomic #

Mass #

Step 4: Determine other product (ensuring everything is balanced).

Step 1: Write the element that you are starting with.

Mass # 226 88 Ra

Atomic #

<u>Example 2:</u> Write the nuclear equation for the radioactive decay of radium – 226 by alpha emission.

Step 2: Draw the arrow.

Mass # 226 88 Ra

Example 2: Write the nuclear equation for the radioactive decay of radium – 226 by alpha emission.

Step 3: Write the alpha particle.

Mass # $\begin{array}{c}
226\\
88Ra \longrightarrow 4\\
2He
\end{array}$

<u>Example 2:</u> Write the nuclear equation for the radioactive decay of radium – 226 by alpha emission.

Step 4: Determine other product (ensuring everything is balanced).

Mass #

Step 1: Write the element that you are starting with.

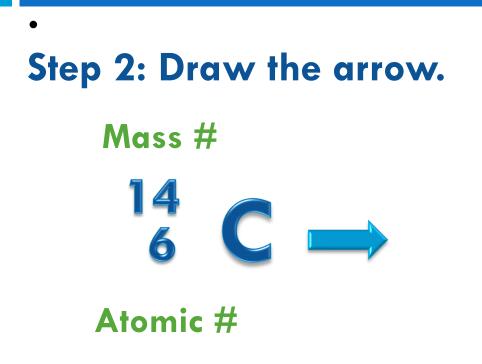
Mass # 97 40 Zr

Step 2: Draw the arrow. Mass # 9740 Zr \rightarrow

Step 3: Write the beta particle.

Mass #

 $\begin{array}{c} 97\\ 40\\ Zr \longrightarrow \\ -1 \end{array} \begin{array}{c} 0\\ -1 \end{array} \end{array}$ Atomic #

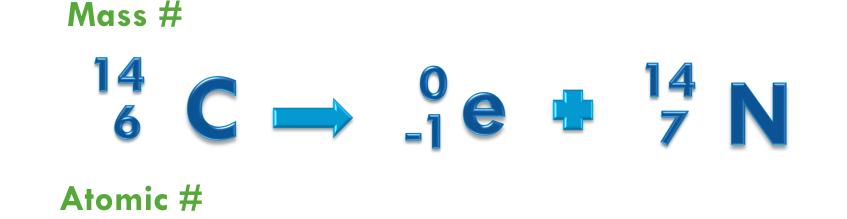

Step 4: Determine other product (ensuring everything is balanced).

 $\begin{array}{c} 97\\40\ Zr \longrightarrow \ _{1}^{0}e \ \textcircled{} 97\\41\ Nb \end{array}$ Atomic #

Mass #

Step 1: Write the element that you are starting with.

Step 3: Write the <u>daughter product</u> this time!


Mass #

۲

Step 4: Determine other product (ensuring everything is balanced).

Sometimes lots of parts! Still just adding/subtracting!

$$(2 \times 1) + 235 = 237 \qquad (3 \times 0) + 237 = 237$$

$$2 \frac{1}{0}n + \frac{235}{92}U \rightarrow 3 \frac{0}{-1}e + \frac{237}{95}Am$$

$$(2 \times 0) + 92 = 92 \qquad (3 \times -1) + 95 = 92$$

By the way...This is called "neutron bombardment"

Sometimes lots of parts! Still just adding/subtracting!

$$0 + 218 = 218$$

$$218 + 0 = 218$$

$$-\frac{0}{1}e + \frac{218}{85}At \rightarrow \frac{218}{84}Po + \gamma_0^0$$

$$(-1) + 85 = 84$$

$$84 + 0 = 84$$

By the way....This is called "electron capture"

YouTube Link to Presentation

https://youtu.be/LrCO eciSLQ