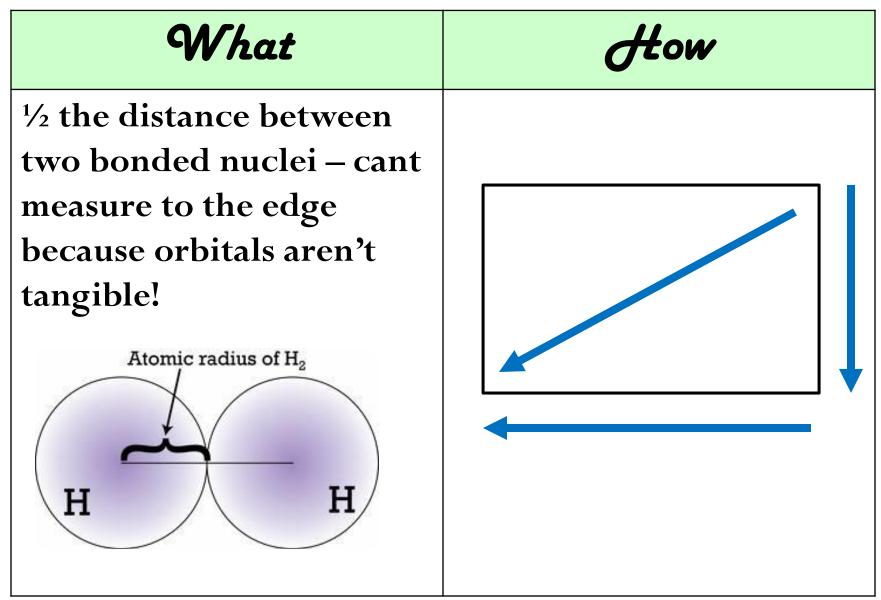
Warning...

Don't over think this stuff. You can talk yourself into backwards answers. Focus on the fact that there are only a set number of trends to learn. Practice explaining each trend until you can do it in your sleep! There will ALWAYS be exceptions. Don't worry about that – focus on the pattern and answer questions based on the patterns.

Warning...

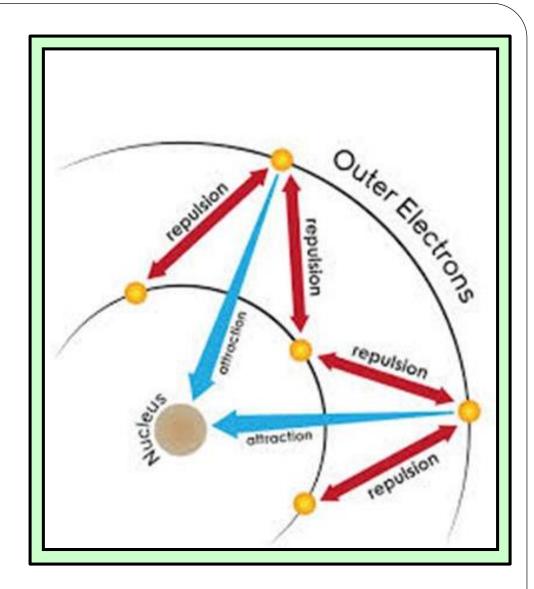
There is about to be a lot of notes because it takes a lot of words to explain – you don't need EVERY word written down to understand it. Focus on listening and understanding. You can add to your notes at home. Capture enough to pay attention, leave space to come back and add/annotate.

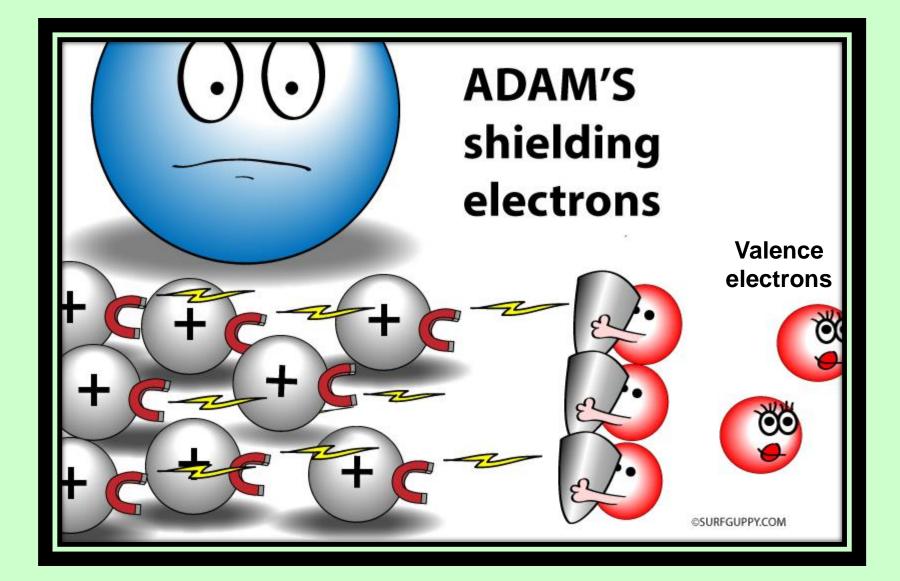

Make sure you capture: What How Why Make sure you can tell me: What How Why

Periodic Jrends

hydrogen 1 H	e 7			đ.		97.C		92			192		555		(62)		- 83 - 7	^{belium} 2 He
1.0079 lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	4.0026 neon 10
Li	Be												В	C	N	0	F	Ne
6,941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11 No	12												13	14	15	16 S	17	18 A m
Na 22.990	Mg 24.305												AI 26.962	Si	P 30.974	3 2.065	CI 35.453	Ar
potassium 19	cateium 20	1	scandium 21	tilanium 22	vanadium 23	chromium 24	manganese 25	iron 26	coball 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 stronlium		44.966	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65,39 cadmium	69.723 Indium	72.61	74.922 antimony	78,96 tellurium	79.904 lodine	83.90 xenon
37	38		yttrium 39	40	41	42	43	44	45	46	47	48	49	tin 50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468 caesium	87.62 barium	Simulat	88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.91	Ba	*	LU 174.97	Hf	Ta 180.95	W 183.84	Re 186.21	OS	Ir	Pt	Au 196,97	Hg	TI 204.38	Pb	Bi	P0	At 1210	Rn
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	tohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112	204.38	ununguadium 114	208.93	1203	210	
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	A CONTRACTOR OF	Uuu	100-0120 J		Uuq				
[223]	[226]	0.0	[262]	[261]	[262]	1266	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
*Lant	hanide	series	lanihanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytlerbium 70		
Lant	lanue	001100	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			138.91 actinium	140.12 Ihorium	140.91 protactinium	144.24 uranium	[145] neptunium	150.36 plutonium	151.96 americium	157.25 curium	158.93 berkelium	162.50 californium	164.93 einsteinium	167.26 fermium	168.93 mendelevium	173.04 nobelium		
* * Act	inide se	eries	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		_

ATOMIC RADIUS




ATOMIC RADIUS

Effective Nuclear Charge (Z_{eff})

Shielding Effect

Calculating Effective Nuclear Charge

The relative attraction the valence electrons have for the protons in the nucleus

$$Z_{eff} = Z - S$$

- Z = nuclear attraction = # protons
- S = the core/inner electrons shielding the valence e-'s
 - = (# of e- in previous noble gas + any d or f e-'s)

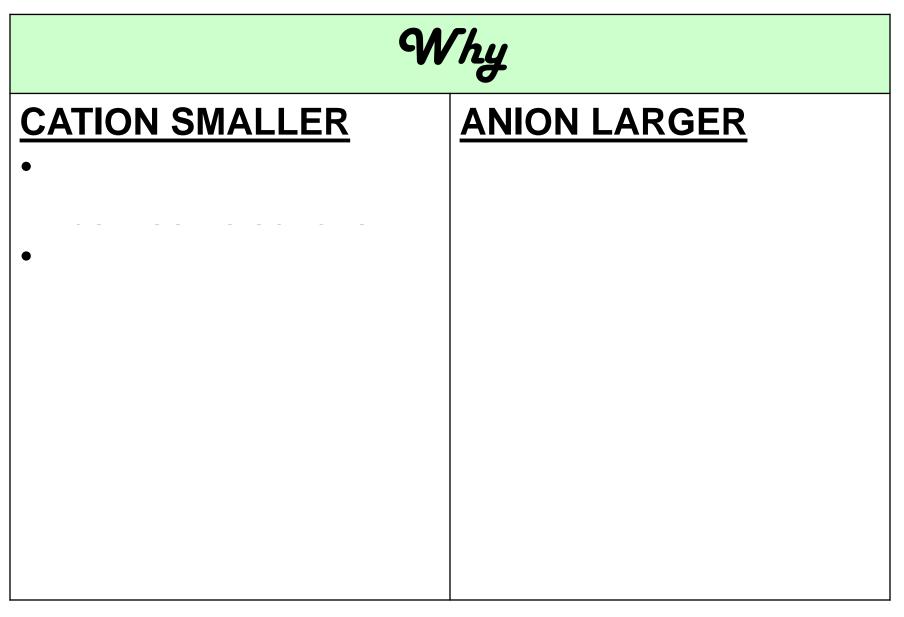
Calculating Effective Nuclear Charge

 $Z_{eff} = Z - S$

Magnesium

- Ζ = '
- S =
- = 70ff -

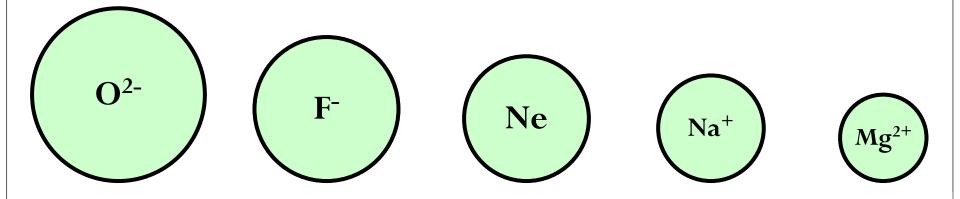
Zeff =


Aluminum Z = ' S =

_ Zeff = Aluminum is smaller – valence electrons are pulled in harder by the nucleus

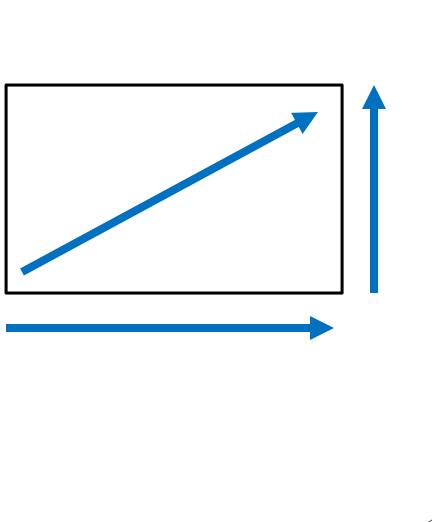
IONIC RADIUS

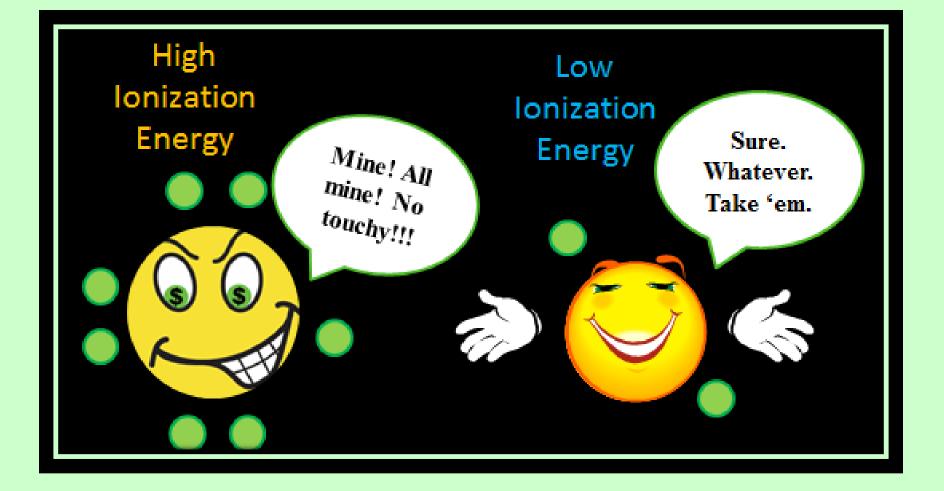
What	How
The radius of an ion	Cation – always smaller
Cation – lost electrons Anion – gained electrons	Anion – always bigger


IONIC RADIUS

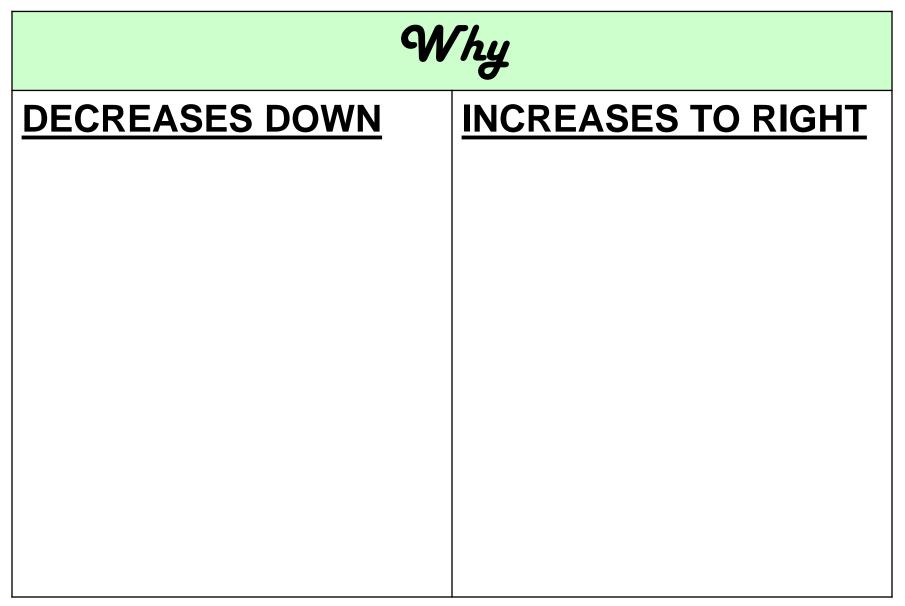
Isoelectric Species

Atoms/lons that have the same number of e-


All these examples are $1s^22s^22p^6$

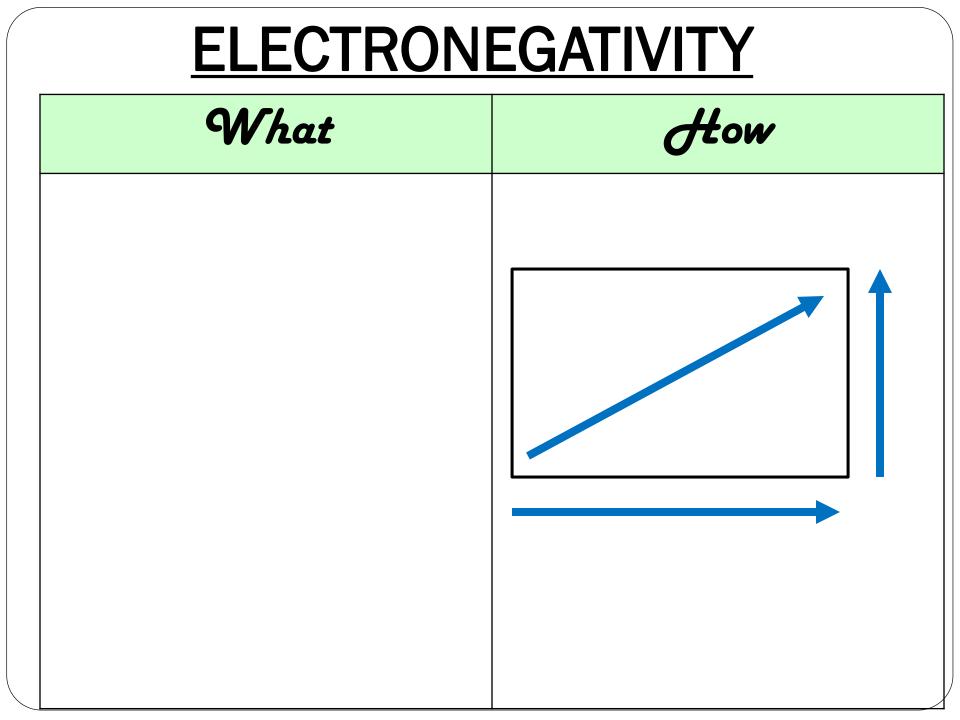


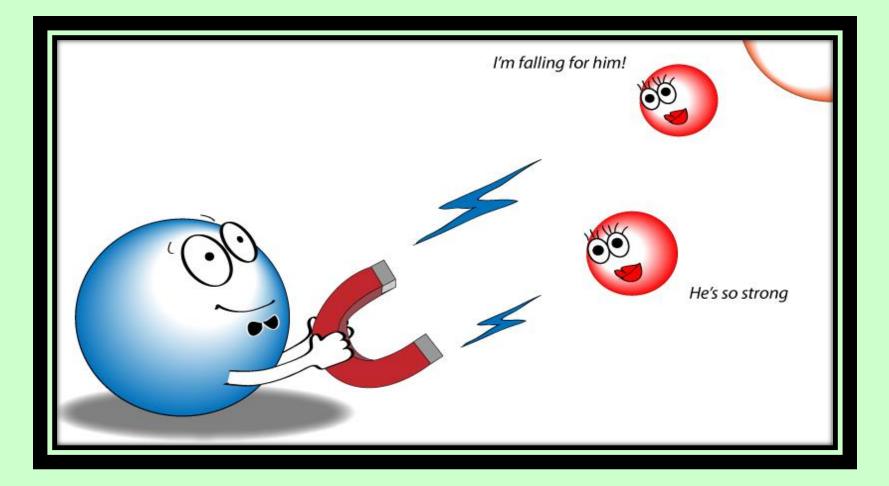
Sonization *Energy*


IONIZATION ENERGY

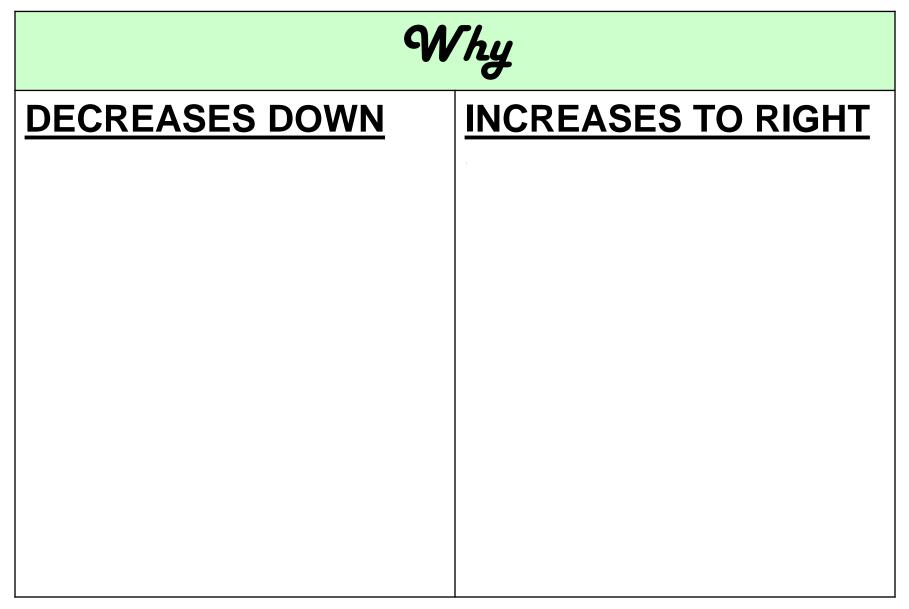
WhatThe energy required toremove on electron from aneutral atom of an element

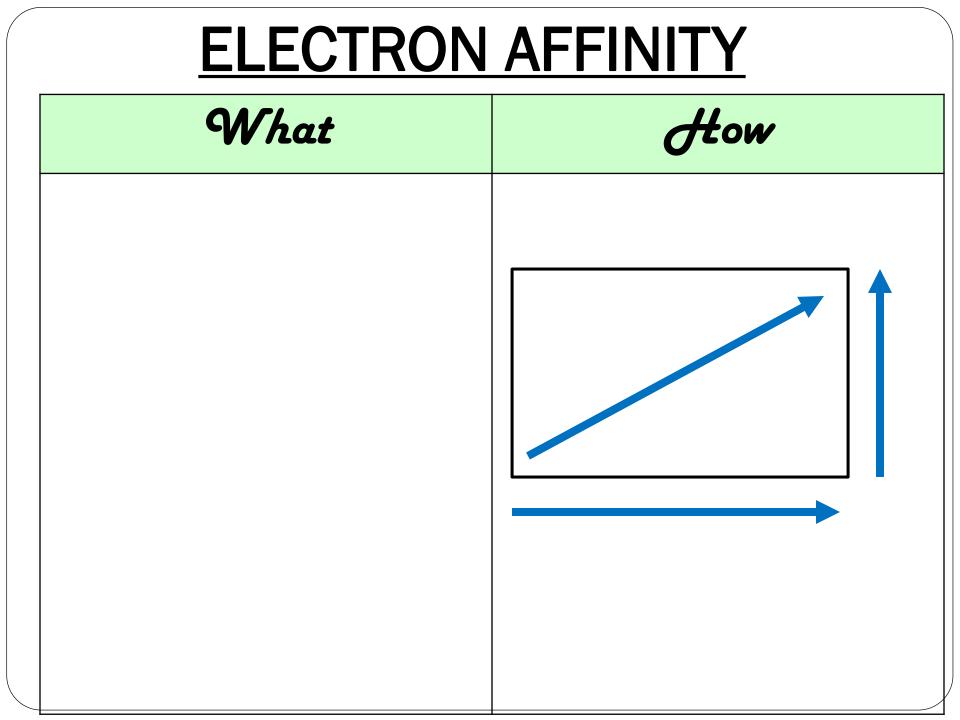
IONIZATION ENERGY

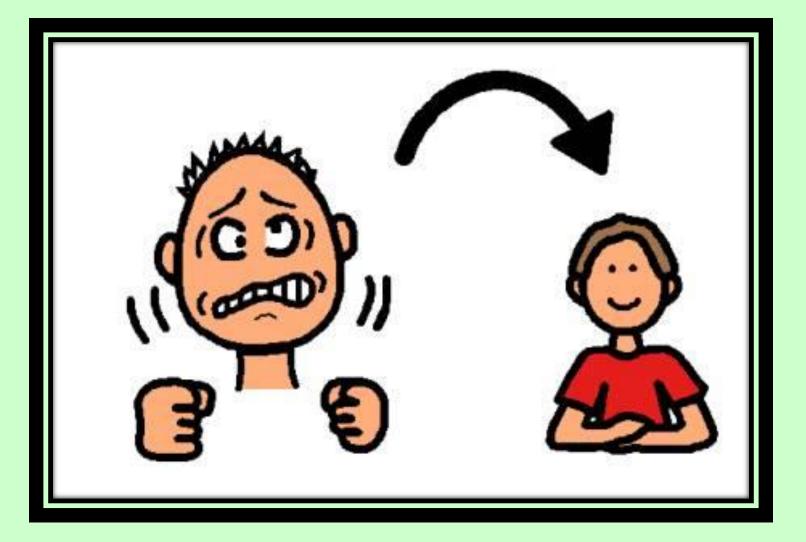



Subsequent Ionizations

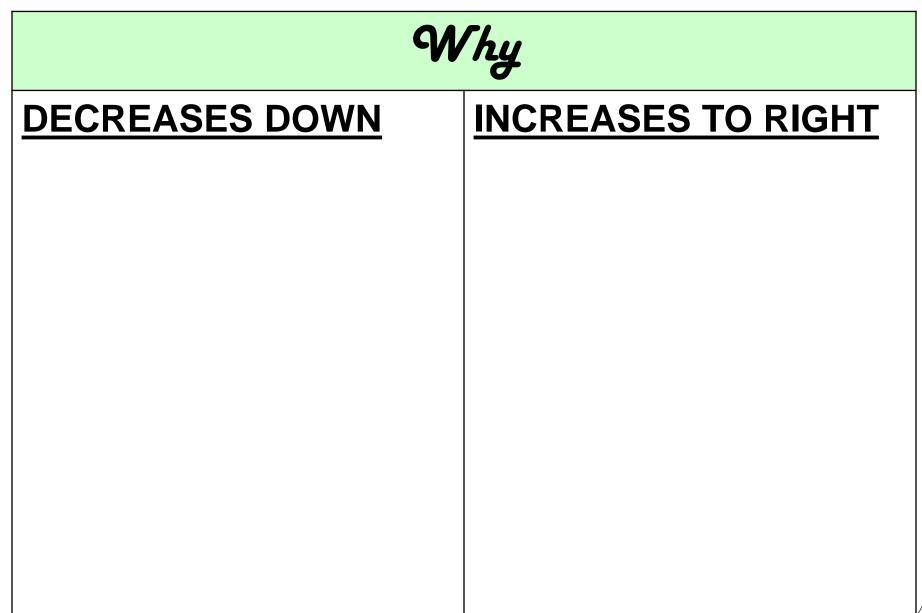
Every time you take an electron away it gets harder to take the next one. Radius is getting smaller, so nucleus can pull harder on the valence - harder to remove the next one. HUGE LEAP in I.E. once it's achieved noble gas configuration – why would it want to lose another one?!


Element	IE ₁	IE ₂	IE ₃	IE ₄
Na	496	4560		
Mg	738	1450	7730	
AI	578	1820	2750	11,600





ELECTRONEGATIVITY



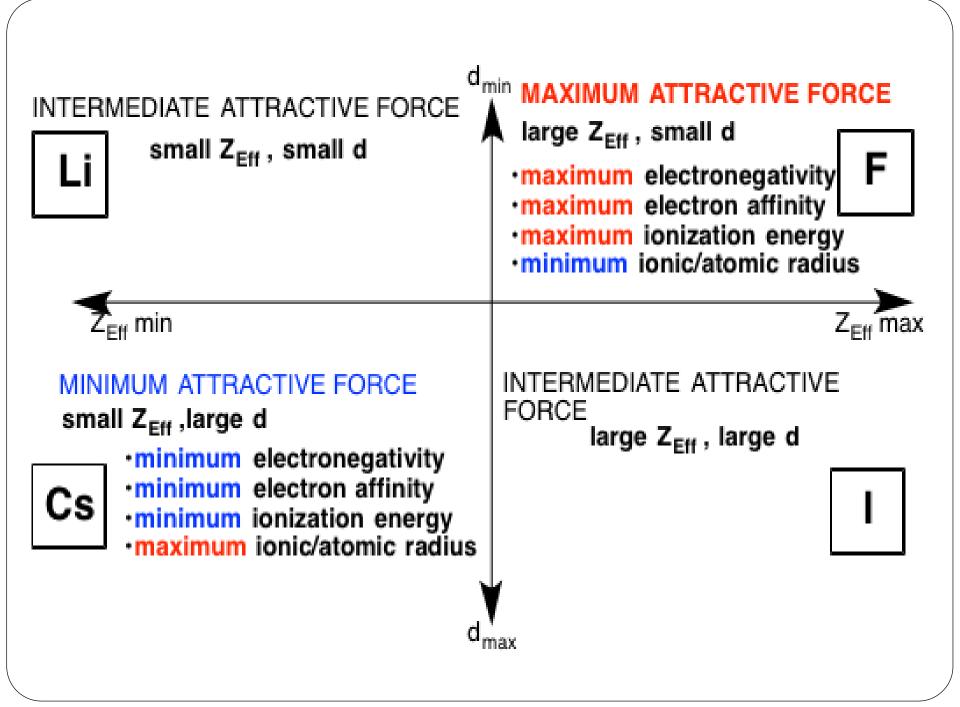
ELECTRON AFFINITY

REACTIVITY

REACTIVITY

Why

METALS INCREASE DOWN


NON-METALS INCREASE UP

IONIZATION ENERGY ELECTRONEGATIVITY ELECTRON AFFINITY EFFECTIVE NUCLEAR CHARGE - Z_{EFF}

								R/	٩D	JU	S								
		1A	1								•								8A 2
		н.																	He
	(Ŋ	1.00794	2A											U N	70	JA	6A	7A	4.002602
	\leq I	3	4											5	6	7	8	9	10
RADIUS	DING	Li 6.941	Be 9.012182											B 10.811	C 12.0107	N 14.0067	O 15.9994	F 18.9984032	Ne 20.1797
		11	12	1										13	14	15	16	17	18
"		Na	Mg											AI	Si	Р	S	CI	Ar
		22.989769	24.3050	3B	4B	5B	6B	7B		— 8B —		1B	2B	26.9815386	28.0855	30.973762	32.065	35.453	39.948
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	ш	K 39.0983	Ca 40.078	Sc 44.955912	Ti 47.867	V 50.9415	Cr 51.9961	Mn 54.938045	Fe 55.845	Co 58.933195	Ni 58.6934	Cu 63.546	Zn 65.38	Ga 69.723	Ge 72.64	As 74.92160	Se 78.96	Br 79.904	Kr 83.798
		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
1		Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	$\overline{\mathbf{O}}$	85.4678	87.62	88.90585	91.224	92.90638	95.96	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293
		55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76	77	78 Pt	79	80	81 TI	82 Pb	83 Bi	84 Po	85	86 D m
		132.9054519	Dd 137.327	Lanthanides	178.49	180.94788	183.84	186.207	OS 190.23	lr 192.217	PL 195.084	Au 196.966569	Hg 200.59	204.3833	207.2	208.98040	[209]	At [210]	Rn [222]
		87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
							-		11-		De	De	0	11		11		11	11
		Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

ONIZATION ENERGY ELECTRONEGATIVITY ELECTRON AFFINITY

<u>Brainiac Video</u> – note: they augmented the reactions, but it is such a fun, silly, memorable video I think it is still worth watching \bigcirc

Disposal of Sodium – old footage from WWII. Neat to see such old footage and how they actually disposed of the sodium after the war!

Quick summary. Also has a quick but good explanation of some <u>exceptions</u> to the trends

https://www.youtube.com/watch?v=hePb00CqvP0