Warning...

- There is about to be a lot of notes because it takes a lot of words to explain
- You don't need EVERY word written down to understand it.
- Focus on listening and understanding.
- You can add to your notes at home.
- Capture enough to pay attention, leave space to come back and add/annotate.

Warning...

- Don't over think this stuff.
- You can talk yourself into backwards answers.
- Focus on the fact that there are only a set number of trends to learn.
- Practice explaining each trend until you can do it in your sleep!
- There will ALWAYS be exceptions. Don't worry about that focus on the pattern and answer questions based on the patterns.

Warning...

Make sure you capture:

What

How

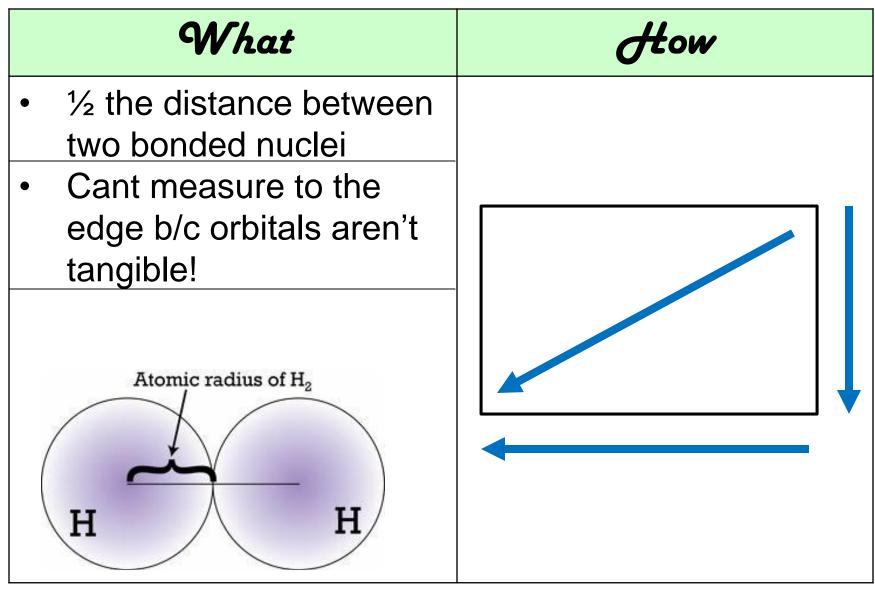
Why

Make sure you can tell me:

What

How

Why


Periodic Trends

hydrogen	r 99		.5%	(F)	152	100	*	Đ)	1020	3%	1007	859	890	13.59//	18.5		- 5	helium
H																		He
1.0079																		4.0026
ithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	С	N	0	F	Ne
6,941 sodium	9.0122 magnesium											-	10,811 aluminium	12.011 silicon	14.007 phosphorus	15.999 suffur	18.998 chlorine	20,180 argon
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	P	S	CI	Ar
22.990 potassium	24.305 catcium	Ĩ	scandium	tilanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 stronlium		44.966 yttrium	47.867 ziroonium	50.942 niobium	51.996 molybdenum	54,938 technetium	55.845 ruthenium	58,933 rhodium	58.693 palladium	63,546 silver	65,39 cadmium	69.723 Indium	72.61 tin	74.922 antimony	78,96 tellurium	79.904 lodine	83.80 xenon
37	38		39	40	41 N.I.	42 N.A.	43	A4 D	45	46	47	48	49	50	51	52	53	54
Rb 85,468	Sr 87.62		88.906	Zr 91,224	Nb	Mo 95.94	Tc	Ru	Rh	Pd	Ag	Cd	In 114.82	Sn	Sb 121.76	Te	126.90	Xe
caesium 55	barium 56	F7 70	lutetium	hafnium	tantalum 73	tungsten	rhenium 75	osmium 76	iridium	platinum	gold 79	mercury 80	thallium	lead	bismuth	polonium	astatine	radon
Cs	3.5	57-70 X	71	Hf	1	W	26, 1,6,250		77 Im	Pt	200	C17(C21(T)	81 T I	Pb	Bi	Po	85 A 4	86 D p
132.91	Ba	^	Lu 174.97	178.49	Ta 180.95	183.84	Re 186.21	Os 190.23	lr 192.22	195.08	Au 196.97	Hg	204.38	207.2	208.98	1209	At	Rn
francium 87	radium 88	89-102	lawrendum 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnillum 110	unununlum 111	ununbium 112	254.55	ununquadium 114	200.30	1200	2.10	[]
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt		100,000	Uub		Uuq				
[223]	1226	£03 503	[262]	[261]	[262]	1266	[264]	[269]	[268]	[271]	[272]	[277]		1289				
*Lanthanide series Ianiharum Cessum Prosecotymium Prometihum Samarium Europium Gadolinium Gad																		
				Th	Pa 231.04	238.03	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No 12591		

Part #1

Atomic Radius

ATOMIC RADIUS

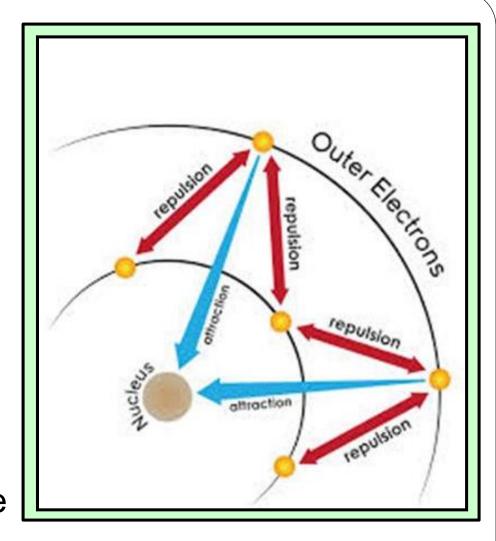
ATOMIC RADIUS

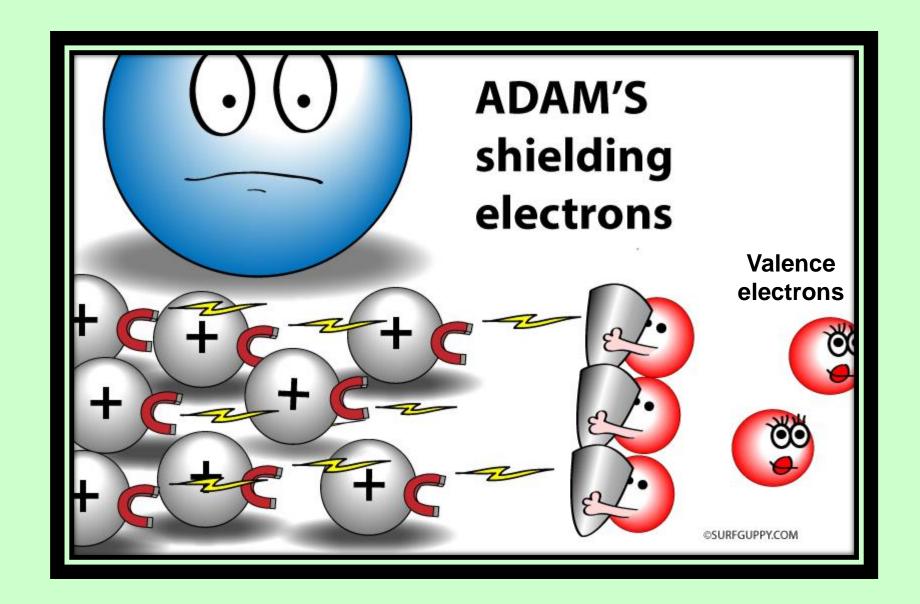
Why

INCREASES DOWN

- Adding energy levels further from the nucleus resulting in larger radius.
- Inner e- keep valence efrom "feeling" the nucleus
- Outer e⁻s are not as pulled in by the protons in the nucleus – there is more "shielding" by the inner electrons

DECREASES TO RIGHT


- Adding a proton = bigger change than adding an e-
- More protons pull the valence electrons in closer - "Greater Effective Nuclear Charge"
- No increase in shielding b/c no new energy levels


Effective Nuclear Charge (Z_{eff})

The relative attraction the valence electrons have for the protons in the nucleus

Shielding Effect

The inner shell electrons repel the outer valence electrons – keeps the valence e- from "feeling" the nucleus. More repulsion results in less attraction between nucleus and valence e-.

Calculating Effective Nuclear Charge

The relative attraction the valence electrons have for the protons in the nucleus

$$Z_{eff} = Z - S$$

- **Z** = nuclear attraction = # protons
- **S** = the core/inner e- shielding the valence e-'s
 - = the total number of e- minus the e- in the highest occupied s and p energy levels
 - = (# of e- in previous noble gas + any d or f e-'s past the noble gas in the element)

Calculating Effective Nuclear Charge

$$Z_{eff} = Z - S$$

Magnesium

Z = 12 protons

S = Previous noble gas

= Neon = 10 electrons

Zeff = 12 - 10 = 2

Aluminum

Z = 13 protons

S = Previous noble gas

= Neon = 10 electrons

Zeff = 13 - 10 = 3

Aluminum is smaller

– valence electrons
are pulled in harder
by the nucleus

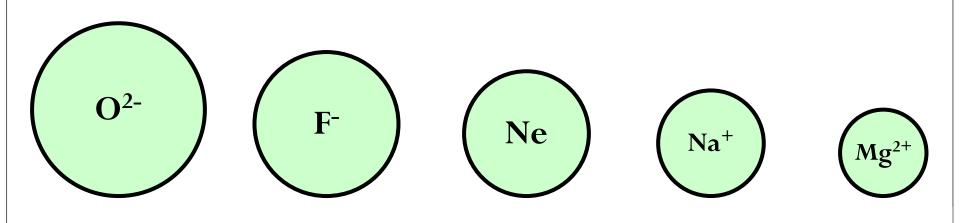
IONIC RADIUS

What	How
The radius of an ion	Cation – always smaller
Cation – lost electrons Anion – gained electrons	Anion – always bigger

IONIC RADIUS

Why

CATION SMALLER


- Reduced repulsion between electrons
- If you lose enough electrons you even drop down an energy level! Much smaller!

ANION LARGER

 Extra valence electrons repel each other a bit more so it gets larger.

<u>Isoelectric Species</u>

Atoms/Ions that have the same number of e-All these examples are $1s^22s^22p^6$

Increased protons can pull harder on the valence electrons – greater effective nuclear charge – so the radius is smaller even though they have the same number of electrons and energy levels

Nonization Energy

IONIZATION ENERGY

What The energy required to remove on electron from a neutral atom of an element Noble Gases are HIGHEST! They REALLY don't want to let go of an e-

IONIZATION ENERGY

Why

DECREASES DOWN

- Electrons are further from nucleus in higher energy levels
- Increased shielding from core e- causes nucleus to not pull as hard on valence e-

INCREASES TO RIGHT

- Closer to having a full stable valence shell
- Increased effective nuclear charge means nucleus is pulling harder on the valence e- so they are harder to remove

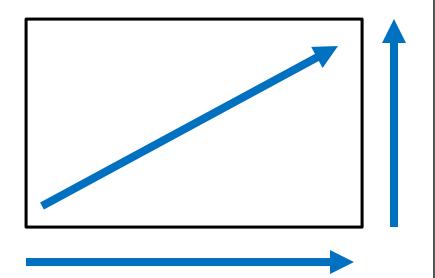
Subsequent Ionizations

Every time you take an e- away it gets harder to take the next one. Radius is getting smaller, so nucleus can pull harder on the valence - harder to remove the next one. HUGE LEAP in I.E. once it's achieved noble gas configuration – why would it want to lose another one?!

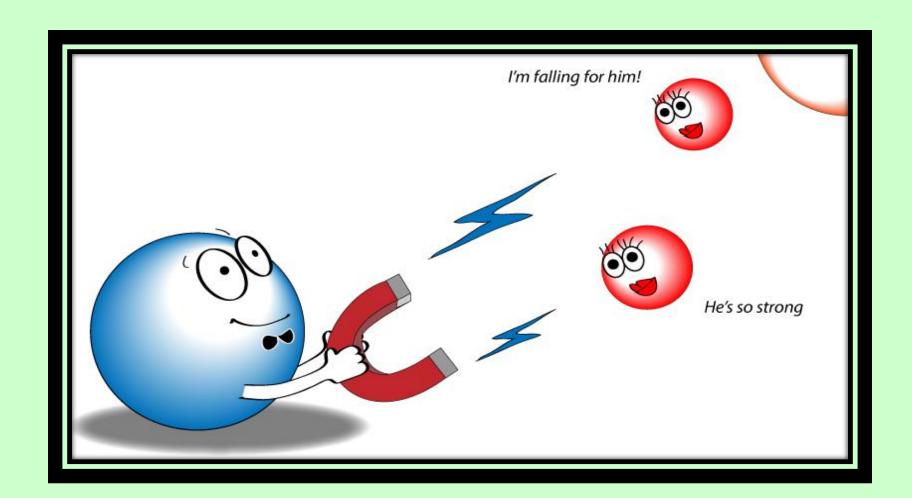
Element	IE ₁	IE ₂	IE ₃	IE ₄
Na	496	4560		
Mg	738	1450	7730	
Al	578	1820	2750	11,600

Part #2

flectronegatvity


ELECTRONEGATIVITY

What


A measure of the ability of an atom in a chemical compound to attract electrons from another atom in the compound

How strongly can one atom pull on the electrons being shared in a bond.

How

Noble Gases are LOWEST!
They DON'T CARE about attracting electrons!

ELECTRONEGATIVITY

Why

DECREASES DOWN

- e- are further from nucleus in higher energy levels
- Increased shielding from core e- causes nucleus to not pull as hard on valence e-
- So nucleus doesn't pull as hard on the bonding e-'s from another atom

INCREASES TO RIGHT

- Smaller radius, increased effective nuclear charge
- Nucleus is pulling harder on the valence electrons – which is where the bonding is occurring.

Reactivity

REACTIVITY

WhatElements in the s

How

Elements in the same group have similar types of behaviors because they have the same number of valence e-

BUT

The MAGNITUDE of their reactions changes!

Metals and Non-metals are opposite trends!

Noble gases are "INERT" or non-reactive

REACTIVITY

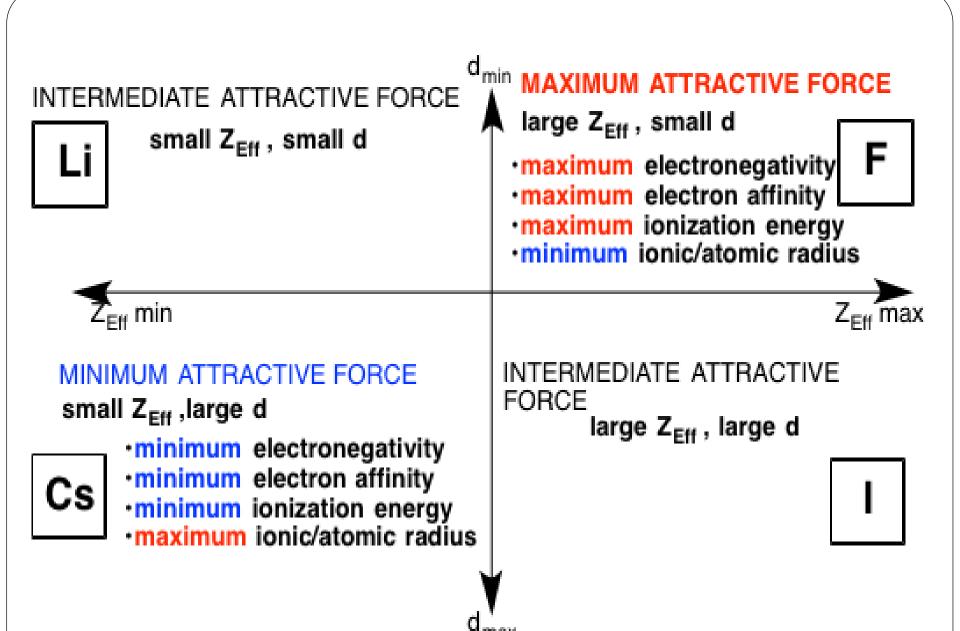
Why

METALS INCREASE DOWN

 Larger radius and increased shielding means lower ionization energy so it is easier to remove electrons

NON-METALS INCREASE UP

 Smaller radius and greater effective nuclear charge means higher electronegativity and electron affinity so it can attract an electron easier


Bummary

IONIZATION ENERGY ELECTRONEGATIVITY ELECTRON AFFINITY EFFECTIVE NUCLEAR CHARGE - Z_{EFF}

RADIUS SHIELDING

RADIUS н He 1.00794 С 0 Be Ne 9.012182 Na ΑI S CI Mg Ar 22.989769 4B 5B 24 3050 26 98153 39 948 26 Τi Sc Cr Mn Fe Co Cu Ga Kr Zn Se 39 0983 40.078 44.955912 47.867 50.9415 8.933195 58.6934 74.92160 83.798 Rb Sr Υ Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Xe 107.8682 Cs Ba Hf Re Os ΤI Pb Po At Rn Ta Au 137.327 180.94788 204.3833 195.084 Fr Rf FΙ Uuo Ra Db Bh Ds Cn Uut Uup Lv Sg Hs Rg

IIZATION ENERGY ECTRONEGATIVITY ECTRON AFFINITY

Brainiac Video — note: they augmented the reactions, but it is such a fun, silly, memorable video I think it is still worth watching ©

<u>Disposal of Sodium</u> — old footage from WWII. Neat to see such old footage and how they actually disposed of the sodium after the war! Quick summary. Also has a quick but good explanation of some exceptions to the trends

https://www.youtube.com/watch?v=hePb00CqvP0

YouTube Link to this Presentation

Part 1

https://youtu.be/jmy5t1V1FTs

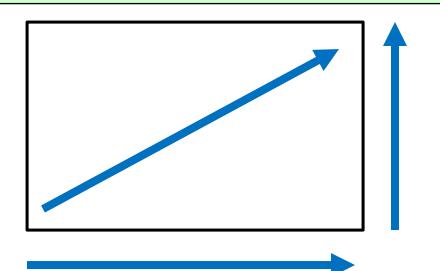
Part 2

https://youtu.be/1TGOnu WJ5I

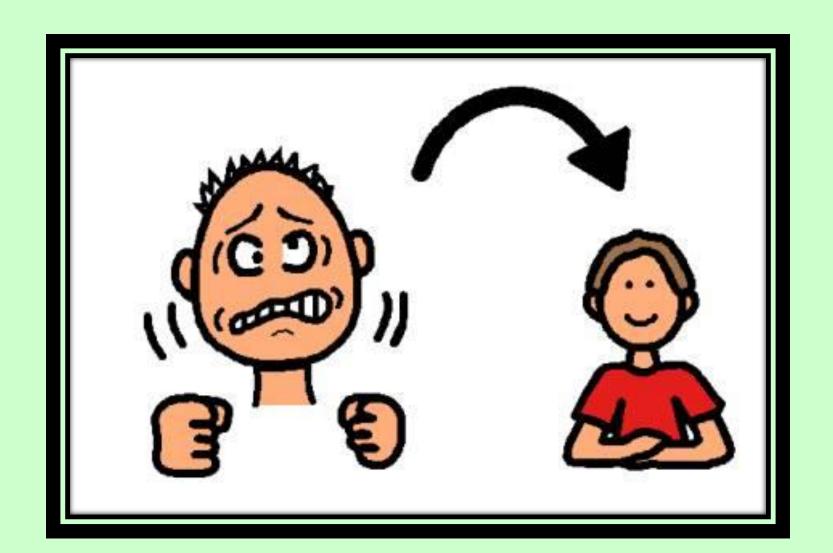
Things past this slide are not being taught this year

Electron Affinity

ELECTRON AFFINITY


What

How much energy is released when the atom gains an electron to make a negative ion.


How much stability does it gain once it is an anion.

More energy released – more stable.

How

Noble Gases are LOWEST!
They DON'T CARE about attracting electrons!

ELECTRON AFFINITY

Why

DECREASES DOWN

- Electrons are further from nucleus in higher energy levels
- Increased shielding from core e-'s causes the nucleus to not pull as hard on valence e-'s
- So atom doesn't notice as much if it gains an electron – doesn't gain much stability

INCREASES TO RIGHT

 Closer to filling valence shell – noble gas configuration is most stable