

Chapter #5

Bonding and Structure

WS # ✓ if there		Stam	ped?	Finished Includes work being shown!		Leave for Mrs. Farmer
1		YES	NO	YES	NO	
2		YES	NO	YES	NO	
3		YES	NO	YES	NO	
4		YES	NO	YES	NO	
5		YES	NO	YES	NO	
6		YES	NO	YES	NO	
7		YES	NO	YES	NO	
8		YES	NO	YES	NO	
9		YES	NO	YES	NO	
10		YES	NO	YES	NO	
11		YES	NO	YES	NO	
12		YES	NO	YES	NO	
13		YES	NO	YES	NO	
14		YES	NO	YES	NO	
15		YES	NO	YES	NO	
16*		This optional worksheet was not printed for you, does not need to be in your packet, it is too long. If you want to print and do some of it that is great! Then include that in your packet.				

* means doing the problems was optional, but the handout must be in the packet. If you did any of the problems, please include the binder paper after the worksheet handout!

During Remote Learning – if you did not print the worksheets then you will do the work directly on binder paper. CLEARLY label the heading of all binder paper so I know what I am looking at. Including Worksheet Number and Title. If you did not print the (*) optional worksheets then include a blank piece of paper with Worksheet Number and Title as a place holder.

Dougherty Valley HS Chemistry Bonding and Structure – Bonding and Naming Basics

Name:

Period:

Seat#:

An	swer the following q	uestions:		
1)	 What is the difference between an anion and a cation 			What is the difference between an ionic bond and a covalent bond?
3)	3) What is a valence electron? Why do you think valence electrons are the ones involved in bonding and not core electrons?			Explain why ionic compounds are electrically neutral
5)	Elements within a group have the same number of what?	6) Are the majority of elements in the periodic table metals or nonmetals?	7)	If you have a compound with a high electronegativity difference (one atom high, one atom low) – what type of bond is it?

How many electrons must be gained or lost by each atom to achieve a stable e- configuration:

8) Sr	9) Sb	10) Si	11) S	12) Se	13) Xe

Which of the following pairs of elements will form ionic bonds, and which will not? Explain why they do, or why the will not.

14) Sulfur and Xenon	15) Sodium and Calcium	16) Strontium and Sulfur	17) Selenium and Chlorine

How many valence electrons are there in each of the following elements AND COMPOUNDS (add up the valence electrons for each atom). Show your addition for the compounds:

18) Ca	19) P	20) Se
21) NH ₃	22) NF ₃	23) Al ₂ (CO ₃) ₃

Identify if each is an ionic compound, or a covalent molecule

24) LiF	25) MgO	26) CH ₄	27) CH₃OH	28) NH ₃	29) H ₂ O

Explain how to name each type of item:

30) Ionic Compounds	31) Covalent Molecules

32) Identify the prefixes for the following numbers:

1	2	3	4	5
6	7	8	9	10

Name each item:

Formula	Metals, Nonmetals, Polyatomic Ions?	Ionic or Covalent?	Name
33) CH ₄			
34) C ₂ H ₆			
35) Ag ₂ O			
36) SO₃			
37) MgBr			
38) Cu			
39) V			
40) Ca(SO ₄)	Polyatomic	Ionic	
41) (NH ₄) ₂ (CO ₃)			

Name:

Worksheet #2

Period:

Seat#:

Answer the following questions about compounds and molecules: 1) Fill in each blank with the word *high* or *low* – you can use the same word multiple times if needed. Covalent bonds form when you have two (or more) atoms with ______ electronegativity

and ______ ionization energy

2)	Fill in each blank with the wor	d <i>high</i> or <i>low</i> – you o	can use the same word	multiple times if needed.
----	---------------------------------	-------------------------------------	-----------------------	---------------------------

Ionic bonds form when you have one type of atom with ______ electron affinity

and one type of atom with _____ ionization energy

3) Draw a diagram of a metallic substance, showing what is unique about the electrons in such a material. Then draw a second drawing showing how the electrons behave when a charge is applied to the material.

Write the names of the following covalent molecules:

4) P ₄ S ₅	5) O ₂	
6) SeF ₆	7) Si ₂ Br ₂	
8) SC/4	9) CH ₄	
10) B ₂ Si	11) NF ₃	
12) PC/ ₃	13) H ₂ O	

Write the formulas for the following covalent molecules:

14) Antimony tribromide	15) Hexaboron monosilicide
16) Chlorine dioxide	17) Hydrogen monoiodide
18) Iodine pentafluoride	19) Dinitrogen trioxide
20) Phosphorus triiodide	21) Disulfur decafluoride
22) Dicarbon hexahydride	23) Iodine heptafluoride

Dougherty Valley HS Chemistry Bonding and Structure – Nomenclature Practice

write the name	s of the following folic compound	э.	
24) Ni ₃ (PO ₄) ₂		25) FeI ₂	
26) MnF ₂		27) NaCN	
28) CuS		29) Li ₂ O	
30) BeCl ₂		31) TiN	
32) MgO		33) NH4NO3	
34) Ag ₂ CO ₃		35) Zn(OH) ₂	
36) Ca(C ₂ H ₃ O ₂) ₂		37) NaHCO₃	
38) Mg ₃ P ₂		39) Al ₂ (CO ₃) ₂	

40) Draw a graph that shows the relationship between the energy of two atoms and the distance between the two when forming a bond *hint* was in our notes!	41) Explain the graph you just drew in the previous question.

Write the names of the following ionic compounds:

Name:

Period:

Worksheet #

Seat#:

BOND WITH A CLASSMATE!

- 1) Get an ion and figure out if it is a cation or anion
- 2) Go around the classroom and find other ions to bond with. Remember, we are making ionic bond so each bond should have ONE cation and ONE anion.
- 3) Write down the symbol and charge for each bonding cation and anion in the appropriate column.
- **4)** With your partner figure out what the compound is that is formed between the two. Remember to pay attention to oxidation numbers so that there is a neutral charge overall.
- 5) With your partner write down the name of the compound you formed.
- 6) You will be told when to rotate and when to switch ion cards

Cation	Anion	Compound	Name
Ca ⁺²	N ³⁻	Ca ₃ N ₂	Calcium nitride

Dougherty Valley HS Chemistry Bonding and Structure – Bonding with a Classmate

Cation	Anion	Compound	Name

Name:

Period:

Seat#:

Worksheet #4

Answer the following questions about compounds and molecules:

1)	What type of charge does a cation have?	2) What type of anion have?	charge does an	3) Why do atoms form ions?
4)	What does "neutral compound"	' mean?	5) Draw a carto represent wh neutral.	oon picture using puzzle pieces to hy LiO is not neutral, but Li ₂ O is

Identify if each item is ionic, covalent, or metallic:

6) (NH ₄) ₂ O	7) N ₂ O ₂	8) SO ₂
9) P ₄ O ₁₀	10) Cu	11) Mg ₃ (PO ₃) ₂

Calculate the electronegativity difference:

You can actually measure how ionic or covalent a bond is by subtracting "electronegativity values." It is a measure of how hard the atom is able to pull on the electrons. If it can pull hard enough then it is an ionic bond because the electrons are considered to have been *transferred*. If they cannot pull hard enough then it is a covalent bond because the electrons are considered to still be shared, if they are shared unequally it is called "polar covalent" meaning it isn't quite ionic yet, but it isn't perfectly shared. Use the following information to determine where each bond lies. Show your calculations to justify your answers.

$\begin{array}{c} \overbrace{\mathbf{Covalent bond:}}^{\delta^{-}} & \overbrace{\mathbf{Covalent bond:}}^{\delta^{+}} & \overbrace{\mathbf{Covalent bond:}}^{-} & \overbrace{\mathbf{Covalent bond:}}^{-} & \overbrace{\mathbf{Covalent bond:}}^{-} & \overbrace{\mathbf{Covalent bond:}}^{+} & \overbrace{\mathbf{Covalent bovalent bond:}}^{+}$		+	12) NO	
		oond: ansferred	13) MgO	
equally				14) Br ₂
0.0 0.4	Electronegat Copyright © 2009 Pea	1.7 ivity difference rson Prentice Hall, Inc.	4.0	15) LiH
	ΔEN	Ionic character		
	>1.7	Ionic		16) LiBr
	0.4-1.7	Polar covalent		
	<0.4	Covalent		
	0	Non-polar	_	17) H₃P
_				,
H = 2.1	N = 3.0	Mg = 1.2	CI = 3.0	18) CIBr
Li = 1.0	<i>O</i> = 3.5	P = 2.1	Br = 2.8	* You can look up electronegativity values online, or you would be given them. You are not expected to memorize the values for each atom, but you should know the range of electronegativity differences and which type of bond that results in.

Write the formulas for the following compounds. For these problems you must show your "crossing over" work to earn credit. Don't forget to look for polyatomic ions, don't forget to reduce subscripts when possible, and rewrite your final answer clearly.

19) Beryllium oxide	20) Sodium sulfate	21) Magnesium hydroxide
22) Copper (I) chloride	23) Zinc carbonate	24) Ammonium nitrate
25) Iron (III) sulfite	26) Vanadium (V) fluoride	27) Manganese (IV) nitride

Write the neutral formulas indicated by the chart. The first one was done for you. If you need to still do the "crossing over" method that's ok! You can do it on a piece of binder paper and staple it to this paper. If you can do it in your head that's great! That is the goal!

Stupic it to	ting paper I	you can do it i	i you neuu ti	at 5 great. The	it is the goal.	
	Zinc	Iron (II)	Iron (III)	Gallium	Silver	Lead (IV)
	Zn ²⁺	Zn ²⁺	Fe ³⁺			
Chloride	ZnCl ₂					
<u>Acetate</u>						
<u>Nitrate</u> NO ₃ -						
<u>Oxide</u>						
<u>Nitride</u>						
<u>Sulfate</u>						

Dougherty Valley HS Chemistry

Bonding and Structure – Lewis St. atoms/lonic/Single Bonds

Name:

Period: Seat#:

Worksheet #5

Answer the following questions:

1)	What is the octet rule? Explain its role in bonding between atoms	2) Indi ator mus a st	cate on top n has, then at be gained able electro	of each aton below each or lost by ea n configurati	n how man atom indica ach of the f on	y valence ele ate how man following ator	ectrons each y electrons ms to achieve
		Sr	Sb	Si	S	Se	Xe
3)	Which of the following pairs of each pair of elements	elements	s will make	COVALENT m	nolecules. E	Explain why c	or why not for
	Sulfur & Xenon Sodiu	m & Calc	ium	Strontium &	& Sulfur	Seleniu	ım & Chlorine

Draw the Lewis Structure for the following atoms:

4) K	5) Ba	6) C	7) S
8) Br	9) Li	10) N	11) Al

Draw the Lewis Structure for the following ionic compounds:

12) KBr	13) BaS	14) Li ₃ N	15) NaBr

Draw the Lewis Structure for the following molecules:

16) H ₂ O	17) HF	18) BF ₃
# Valence e-:	# Valence e-:	# Valence e-:
# Lone Pairs:	# Lone Pairs:	# Lone Pairs:

Dougherty Valley HS Chemistry Bonding and Structure – Lewis St. atoms/lonic/Single Bonds

19) Br ₂	20) HCI	21) ICl
# Valence e-:	# Valence e-:	# Valence e-:
# Lone Pairs:	# Lone Pairs:	# Lone Pairs:
22) CH ₄	23) PC15	24) N ₂ H ₄
# Valence e-:	# Valence e-:	# Valence e-:
# Lone Pairs:	# Lone Pairs:	# Lone Pairs:
25) NH ₃	26) HOOH	27) CH ₂ Cl ₂
# Valence e-:	# Valence e-:	# Valence e-:
# Lone Pairs:	# Lone Pairs:	# Lone Pairs:
28) CH ₃ OH	29) SF ₆	30) NBr ₃
# Valence e-:	# Valence e-:	# Valence e-:
# Lone Pairs:	# Lone Pairs:	# Lone Pairs:

Dougherty Valley HS Chemistry

Bonding and Structure – Lewis St. Multiple Bonds, & Mixed

Name:

Period: Seat#:

Worksheet #6

Answer	the	following	q	uestions:

	J				
1)	What are the common eler the octet rule? List them a how many e- each can be	men as w sati	ts that can break rell as indicate sfied with.	2)	What is an expanded Octet?
3)	How many electrons are being shared in a single bond? In a double bond? In a triple bond?	4)	What are the step Structure? Make s triple bonds.	s yo sure	ou need to follow in order to draw a Lewis you explain how we go about doing double or

Draw the Lewis Structure for the following molecules:

Molecule	Lewis Structure	Descr	ription	Molecule	Lewis Structure	Descr	iption
5) HCN		# of Single Bonds	# of Double Bonds	6) Carbonate Ion		# of Single Bonds	# of Double Bonds
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs
7) C ₂ N ₂		# of Single Bonds	# of Double Bonds	8) OCN ⁻		# of Single Bonds	# of Double Bonds
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs
9) NO ₂ -		# of Single Bonds	# of Double Bonds	10) N ₂ H ₂		# of Single Bonds	# of Double Bonds
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs

Dougherty Valley HS Chemistry Bonding and Structure – Lewis St. Multiple Bonds, & Mixed

	1			1		T
	# of Single	# of Double			# of Single	# of Double
	Bonds	Bonds			Bonds	Bonds
11) C_2H_4			12) F₃NO			
				-		
# Valence	# of Triple	# of	# Valence		# of Triple	# of
electrons	Bonds	Lone Pairs	electrons		Bonds	Lone Pairs
					1	
	# of Single	# of Double			# of Single	# of Double
	Bonds	Bonds	14)		Bonds	Bonds
12) 11 CO						
13) H ₂ CO			Phosphate			
			lon			
				-		
# Valence	# of Triple	# of	# Valence		# of Triple	# of
electrons	Bonds	Lone Pairs	electrons		Bonds	Lone Pairs
					1	
					1	
	# 5 C 1					
	# of Single	# of Double			# of Single	# of Double
	Bonds	Bonds			Bonas	Bonds
15) Clo			16) HBr			
13) CIO3			то) пы		1	
11. X + 1 + + + +	# of Triplo	# of	# \ / = 1 = = = = =	-	# of Triplo	# of
# valence	# Of Triple	# OI	# valence		# OF THPIE	# OI
electrons	Bonus	Lone Pairs	electrons		Bonus	Lone Pairs
					1	
					1	
	# of Single	# of Double			# of Single	# of Double
	Bonds	Bonds			Bonds	Bonds
	Donas	Donas			Donas	Donas
17) CO			18) NO₂ ⁻			
,			,			
# Valence	# of Triple	# of	# Valence		# of Triple	# of
in valence	Bonds	Lone Pairs	" valence		Bonds	Lone Pairs
electrons	Donas	Lone runs	electrons		Donido	Lone rans
	# of Single	# of Double			# of Single	# of Double
	Bonds	Bonds			Bonds	Bonds
			_			
19) SO ₂			20) CF₄			
# Valence	# of Triple	# of	# Valence		# of Triple	# of
alactrons	Bonds	Lone Pairs	alactrons		Bonds	Lone Pairs
electrons			electrons			
		1			ł	

Dougherty Valley HS Chemistry National Mole Day Celebration

Worksheet #7Period: Seat#:

Introduction: The date, October 23rd, had been designated as National Mole Day, starting at 6:02 AM. In celebration of this special date, you will be given an opportunity to make atomic cookies in class, but first...

Part I

Name:

- 1) Look up the definition of a mole. The chemistry "mole" not the weird little animal!
- 2) A mole is sometimes referred to as Avogadro's # when we are writing it as a conversion factor with mole and molecules as our units on the conversion factor. Write Avogadro's # as a conversion factor just like we do for something like inches and feet ^{12 in}/_{1 ft}
- 3) Using Avogadro's number as a conversion factor, figure out how many molecules are in 3.58 moles of a substance. Show work in the "line method" dimensional analysis set up. Show units, cancel units, get an answer with units and a box!
- 4) Using Avogadro's number as a conversion factor, figure out how many moles are in 5.45 x 10²⁵ molecules. Show work in the "line method" dimensional analysis set up. Show units, cancel units, get an answer with units and a box!
- 5) We can figure out how much one mole of something weighs by using the periodic table and atomic masses to calculate the "molar mass." The mass of one atom of Carbon is 12.01 amu but the mass of one mole of Carbon conveniently works out to be 12.01 grams! So the molar mass of carbon is said to be ^{12.01 grams}/_{1 mole} which is another conversion factor we can use! Using the molar mass of Bromine, calculate how much 6.79 moles of Bromine would weigh. Show work in the "line method" dimensional analysis set up. Show units, cancel units, get an answer with units and a box!

6) Using the molar mass of the element with the electron configuration 1s²2s²2p⁶3s¹ calculate how many moles are in 15 grams of that element. Show work in the "line method" dimensional analysis set up. Show units, cancel units, get an answer with units and a box! Demonstrate your knowledge of atomic structure by identifying the ion and atom below. Use the key to find the numbers of subatomic particles in each and fill in the spaces. Check this with your teacher before you proceed.

Part II

Create your own examples using the materials supplied by your classmates. Do one atom and one ion. Your examples must be for elements below atomic #7. Refer to the list below to determine the correct charge on ions. When directed, check your model with a key before making our "Atomic Cookies." Enjoy!

Dougherty Valley HS Chemistry Bonding and Structure – Mixed Practice

Name:

Period:

Seat#:

Worksheet #8 :

Answe	er the following questions:				
1) Whex	hat are the common ceptions to the octet rule?	2)	Which compound has the most (Think about what periodic tren in the first place.) LiCl v	ioni nd ca s.	c character? Explain why. auses a compound to be ionic LiF
3) Wh for sin diff	hat kind of bond is likely to rm if the atoms have very nilar electronegativity ferences?	4)	What type of bond is formed when electrons are delocalized and move throughout the substance?	5)	What is the formula for Mercury (I) Chloride?
6) If a has diff	an unknown compound XY s an electronegativity ference of 1.0, what type bond is it?	7)	Using the information in Question #6 and the information below, what must the unknown compound XY be? $N = 3.0$; $O = 3.4$ C = 2.5; $CI = 3.2$; $H = 2.2$	8)	Do atoms form bonds because they are moving towards higher or lower potential energy?

Provide the information asked for:

	Sodium Oxide	2)	Iodine gas
-	Type of bond:	-	Type of bond:
	Formula:		Formula:
	Lewis Structure:		Lewis Structure:
3)	Hydrogen cyanide	4)	Iodine trifluoride
	Type of bond:	,	Type of hond:
	//		
	Formula:		Formula:
	Formula: Lewis Structure:		Formula: Lewis Structure:
	Formula: Lewis Structure:		Formula: Lewis Structure:
	Formula: Lewis Structure:		Formula: Lewis Structure:
	Formula: Lewis Structure:		Formula: Lewis Structure:
	<i>Formula: Lewis Structure:</i>		Formula: Lewis Structure:
	Formula: Lewis Structure:		Formula: Lewis Structure:
	<i>Formula: Lewis Structure:</i>		Formula: Lewis Structure:
	Formula: Lewis Structure:		Formula: Lewis Structure:

Dougherty Valley HS Chemistry Bonding and Structure – Mixed Practice

5)	NH4 ⁺	6)	PCI ₅
	Type of bond:		Type of bond:
	Name:		Name:
	Lewis Structure:		Lewis Structure:
7)	C ₂ H ₂	8)	XeF ₄
	Type of bond:		Type of bond:
	Name:		Name:
	Lewis Structure:		Lewis Structure:
0)		10	
9)	CH3UCH3	10	Tune of hend:
	Name: Dimethyl ether		Name: Acetone
	Lewis Structure		Lewis Structure
11	CIF ₂ +	12)	CH₃Cl
	Type of bond:		Type of bond:
	Name:		Name: Methyl chloride
	Lewis Structure:		Lewis Structure:

Dougherty Valley HS Chemistry Bonding and Structure – Mixed Practice

Name:

Period:

Seat#:

Worksheet #9

Ans	wer the following questions:		
1)	What are the three types of bonds and how are their electron positions different?	2)	Why do you need to use prefixes for naming covalent bonds and not for naming ionic bonds?
3)	Why does carbon dioxide have two double bonds?	4)	Why can some elements have more than 8 electrons in their valance shell and what do we call it when they do?
5)	List the Roman numerals from 1 to 10.	ı	

Complete the following table:

Formula	Type of Bond	Name
6) Na ₂ SO ₄		
7) SiO ₂		
8)		Lead (II) nitrite
9)		Chromium (III) oxide
10) HgO		
11)		Iron (II) phosphate
12)		Hexaboron silicide
13) SCI4		
14) P ₄ S ₅		
15) NaHCO₃		

Draw the Lewis Structure for the following molecules:

Molecule	Lewis Structure	Description		Molecule	Lewis Structure	Description		
16) SF ₆		# of Single Bonds	# of Double Bonds	17) Sulfate ion		# of Single Bonds	# of Double Bonds	
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs	
18) CH₃OH		# of Single Bonds	# of Double Bonds	19) BFCl₂		# of Single Bonds	# of Double Bonds	
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs	
20) O ₃		# of Single Bonds	# of Double Bonds	21) BeH2		# of Single Bonds	# of Double Bonds	
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs	
22) Sil₄		# of Single Bonds	# of Double Bonds	23) K₂SO₃		# of Single Bonds	# of Double Bonds	
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs	
24) Fe3(PO4)2		# of Single Bonds	# of Double Bonds	25) NaOH		# of Single Bonds	# of Double Bonds	
# Valence electrons		# of Triple Bonds	# of Lone Pairs	# Valence electrons		# of Triple Bonds	# of Lone Pairs	

Dougherty Valley HS Chemistry Bonding and Structure – Molecular Geometry Acti		Worksheet #10	
Name:	Period:	Seat#:	

<u>Purpose</u>: To construct a series of compounds using the VSEPR model and to use your model to determine the type of bonding and hybridization, and the geometry around each **central** atom.

Background: The VSEPR model is based on the premise that electron pairs around a central atom will position themselves to allow for maximum separation. Instead of writing an actual Background Paragraph, just answer these questions below.

1) What does VSEPR stand for?

- 2) Name the seven different structural shapes
- 3) Explain why pairs of electrons around a central atom repel each other.

Materials:

- Styrofoam Balls - 2 different colors of Playdough	- Protractor - Toothpick	- Color pencils/markers
---	--------------------------	-------------------------

<u>Procedure</u>: (Steps with a * should be completed before you get to class. Steps with a ** should be completed after class.)

- 1. * Draw Lewis Structure
- 2. * Determine the following for each atom:
 - a. Number of lone pairs and bond pairs around the central atom.
 - b. AXE formula (A center atom, X bonded atoms, E lone pairs)
 - c. Steric Number
- 3. * Using the information from Step 2 and a VSPER chart (which should be memorized!), determine the following:
 - a. Electronic Geometry (linear, trigonal planar, tetrahedral, trigonal bi-pyramidal, or octahedral)
 - b. Molecular Geometry (linear, trigonal planar, trigonal pyramidal, tetrahedral, bent, trigonal bi-pyramidal, or octahedral)
 - c. Bond angle between the atoms attached to the central atom. (Based on the molecular geometry)
 - d. Type of hybridization of the central atom in each molecule if any (sp, sp², sp³, sp³d)
- 4. Construct a 3D model for each compound or ion with the provided materials.
 - a. Use the Styrofoam balls as the center atoms (A), the Playdough for your outer atoms (X), and plain toothpicks as lone pairs (E).
 - b. Use one toothpick for single bonds, two toothpicks for double bonds, and three toothpicks for triple bonds.
 - c. Use your protractor to get the bond angles as close as possible it's hard to do with playdough and toothpicks, that's ok!
 - d. Have someone from your group take a photo of your models, use the index cards to label each model.
 - i. ** Add photos to a Google Doc that will be turned in as a GROUP assignment! Detailed instructions will be given in class.
- 5. * or ** depending on timing in class Sketch a 3D picture of your model.
 - a. Needs to show effort, be neat, accurate representation of bond angles, etc.

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
$\mathrm{NO_3}^-$					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
SiCl ₄					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
CO_2					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
NC1H2					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
XeF ₄					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
CH ₂ O					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
SF_6					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
BF ₃					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
$\mathrm{NO_2}^-$					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
SF_4					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
ClF ₃					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
BrF5					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
N_2					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					
# Lone Pairs					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
$\mathrm{NH_{4}^{+}}$					
# Bond Pairs	Steric Number		Molecular Geometry	Hybridization	
# Lone Pairs					

Done early? You can try doing these too!

CCl₄, NH₃, H₂O, SCl₂, I₃⁻, SO₂, ICl₄⁻, AsF₅, IF₄⁺, H₃O⁺, TeF₅⁻, HCN, IOF₅, BrF₃, SO₄²⁻, CO₃²⁻

Please clean up!

Put the playdough away in the cans. close the lids tightly. Put toothpicks and Styrofoam balls back in the correct weigh boats. Put everything back on the tray.

Dougherty Valley HS Chemistry Bonding and Structure – VSPER Practice

Worksheet #11

Name[.]

Name:	Period:	Seat#:
1) What is the main idea behind VSEPR theory?	2) Describe what hybridization is. (Give an example.

For each of the following compounds, draw a Lewis Structure, determine the AXE formula, steric number, electronic geometry, molecular geometry, bond angles, and hybridizations.

3) Carbon tetrachloride	Lewis Structure	4) BH ₃	Lewis Structure
<u>Formula</u> :		Name:	
<u>AXE:</u>		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		<u>Molecular Geo:</u>	
Bond Angles:		Bond Angles:	
Hybridization:		Hybridization:	
5) Silicon disulfide	Lewis Structure	6) C ₂ H ₂	Lewis Structure
<u>Formula</u> :		<u>Name</u> :	
<u>AXE:</u>		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
<u>Hybridization:</u>		Hybridization:	
7) Phorsphorus trifluoride	Lewis Structure	8) SF ₆	Lewis Structure
<u>Formula</u> :		Name:	
<u>AXE:</u>		<u>AXE:</u>	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
Hybridization:		Hybridization:	

Dougherty Valley HS Chemistry Bonding and Structure – VSPER Practice

9) Dihydrogen monoxide	Lewis Structure	10) PCI₅	Lewis Structure
<u>Formula</u> :		Name:	
<u>AXE:</u>		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
Hybridization:		Hybridization:	
11) SeF ₂	Lewis Structure	12) CO ₃ ²⁻	Lewis Structure
<u>Name</u> :		<u>Name</u> :	
<u>AXE:</u>		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
Hybridization:		Hybridization:	
13) Xenon tetraoxide	Lewis Structure	14) CIF ₅	Lewis Structure
<u>Formula</u> :		<u>Name</u> :	
AXE:		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
Hybridization:		Hybridization:	
15) Br ₃ -	Lewis Structure	16) SO ₃ ²⁻	Lewis Structure
<u>Name</u> :		<u>Name</u> :	
<u>AXE:</u>		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molocular Cool	
		Molecular Geo.	
Bond Angles:		Bond Angles:	

Dougherty Valley HS Chemistry Bonding and Structure – VSPER Practice

17) CO ₂	Lewis Structure	18) KrF ₄	Lewis Structure
Name:		Name:	
AXE:		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
Hybridization:		Hybridization:	
19) SF ₄	Lewis Structure	20) O ₃	Lewis Structure
Name:		Name:	
<u>AXE:</u>		<u>AXE:</u>	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
<u>Hybridization:</u>		Hybridization:	
21) CHCl ₃	Lewis Structure	22) SO ₂	Lewis Structure
Name:		Name:	
<u>AXE:</u>		AXE:	
<u>Steric #:</u>		<u>Steric #:</u>	
Electron Geo:		Electron Geo:	
Molecular Geo:		Molecular Geo:	
Bond Angles:		Bond Angles:	
Hybridization:		Hybridization:	
23) Iodine pentafluoride	Lewis Structure	24) Find a molecule not on this WS	and fill out the info:
<u>Formula</u> :		<u>Formula</u> :	
AXE:		Name:	
<u>Steric #:</u>		<u>AXE:</u>	
Electron Geo:		<u>Steric #:</u>	
Molecular Geo:		Electron Geo:	
Bond Angles:		Molecular Geo:	
Hybridization:		Bond Angles:	
		Hybridization:	

Dougherty Valley HS Chemistry Bonding and Structure – Bing Bing Toe

Name:

Period:

Worksheet #12

Seat#:

You must participate during the Bing-Bing-Toe Review activity! Please make sure to do the following so you can earn full credit for this assignment:

- Number each problem to match the PowerPoint numbering
- Highlight the question numbers so I can quickly and easily give you points!
- Show any/all work if applicable
- Show all final answers
- Correct your answers if they were wrong!
- Staple binder paper to the back of this if you ran out of space.

Dougherty Valley HS Chemistry Bonding and Structure – Bing Bing Toe QUESTIONS

Name:

Period:

Worksheet #12B

Seat#:

These are the questions that went with WS #12 Bing Bing Toe Game. For any questions you did not complete in class, use this paper to finish the problems on WS #12. Put your work and answers on WS #12 not this paper, this is just the questions! This must be included in your rainbow packet!

- 1) How many valence electrons does Aluminum have?
- 2) How is a covalent bond formed?
- 3) What is the name given to the electrons in the highest occupied energy level of an atom?
- 4) What does calcium do in order to form an ionic bond?
- 5) What is the formula for sodium sulfate?
- 6) Draw the Lewis dot structure for carbon dioxide and how many lone pairs does it have?
- 7) What is the electron configuration for Strontium?
- 8) What is the name of the following compound: Cu(SO₄)₂
- 9) Draw the Lewis dot structure for peroxide
- 10) What is the charge on the compound sodium sulfide?
- 11) Which is more electronegative Oxygen or carbon?
- 12) What kind(s) of elements do you (usually) need to form an ionic compound?
- 13) When can you form an ionic bond without having a metal present?
- 14) What is wrong with the following formula? Cu204
- **15)** fill in the blanks: ionic bonds form when one atom has _____ electron affinity and one has _____ ionization energy
- 16) How many e- does BARIUM give up to achieve a noble gas config.? What is that config. In noble gas format?
- 17) What type of elements do you need to form a covalent bond?
- 18) What type of bond is in copper and describe how the e-'s behave in this type of bond?
- **19)** What is the name of the following compound? Cr₃(PO₄)₂
- **20)** Complete the following rxn and name the type of rxn. ${}^{42}_{19}K \rightarrow {}^{0}_{-1}e + ?$
- 21) Do covalent bonds exibit high or low electronegativity differences?
- 22) Name the Diatomic elements.
- 23) Write the formula for potassium nitrate.
- 24) Draw the Lewis dot structure for beryllium fluoride.
- 25) What is the formula for CH₄?
- 26) Draw the Lewis str. for sulfur hexaiodide.
- 27) What is the name of the compound Si₂Br₆
- 28) What is the name for the following compound? P₄O₁₀
- 29) What is the formula for silver nitrate?
- 30) What is the formula for potassium chlorite?
- 31) What is the formula of the compound strontium phosphite?
- 32) Why is a water molecule bent? Draw me a picture!
- 33) What is the formula of the compound strontium phosphide?
- **34)** How many items are in a mole?
- **35)** What is the name of the polyatomic ion NH₄+?

Dougherty Valley HS Chemistry Bonding and Structure – Polarity

Worksheet #13

Name:

Period:

Seat#:

For el one of	For each of the following pairs <u>write the name or formula</u> if it is missing, <u>draw the Lewis structure</u> , <u>identify any polarity</u> present with one of the ways you were shown in class, and then if both are polar <u>determine which is most polar</u> and <u>explain</u> your reason:					
Ĭ	carbon disulfide	sulfur difluoride				
1)						
2)	nitrogen trichloride	oxygen dichloride				
3)	boron trihydride	ammonia				
4)	chlorine	phosphorus trichloride				
5)	silicon dioxide	carbon dioxide				
6)	methane	CH ₂ Cl ₂				
7)	silicon tetrabromide	HCN				

Dougherty Valley HS Chemistry Bonding and Structure – Polarity

	nitrogen trifluoride	phosphorus trifluoride
8)		
	methyl chloride (CHCl ₃)	methyl bromide (CHBr ₃)
9)		
	water	hydrogen sulfide (H₂S)
10)		
	hydrochloric acid (HCI)	hydroiodic acid (HI)
11)		
	bromoacetylene (C ₂ HBr)	chloroacetylene (C ₂ HCl)
12)		
	methanol (CH ₃ OH)	diethyl ether [(CH ₃) ₂ O]
13)		
	acetone [(CH ₃) ₂ CO]	propanol (C ₃ H ₈ O)
14)		

Dougherty Valley HS Chemistry Bonding and Structure – IMFs

Worksheet #14

Name:

Period:

Seat#:

Indicate the **strongest** IMF holding together crystals of the following:

			Molecular Crysta	al	Metal	Ionic Crystal	Network Solid
		London forces	Dipole-dipole attractions	Hydrogen Bonds	Metallic Bonds	Ionic Bonds	Covalent Bonds
1.	NH ₃						
2.	Kr						
3.	HCl						
4.	F_2						
5.	KMnO ₄						
6.	NaCl						
7.	SO_2						
8.	CO ₂						
9.	C_3H_8						
10.	CH ₄						
11.	CH ₃ Cl						
12.	HF						
13.	C ₆ H ₆						
14.	NO						
15.	H_2SO_4						
16.	WC						
17.	Si						
18.	SiO ₂						
19.	C(graphite)						
20.	N_2						
21.	CH ₃ OH						
22.	Ag						
23.	$(C_2H_5)_2NH$						
24.	NaOH						
25.	Al						
26.	PCl ₃						

			Molecular Crysta	al	Metal	Ionic Crystal	Network Solid
		London forces	Dipole-dipole attractions	Hydrogen Bonds	Metallic Bonds	Ionic Bonds	Covalent Bonds
27.	XeF ₄						
28.	Не						
29.	Na						
30.	СО						
31.	Ar						
32.	Ba(OH) ₂						
33.	O ₂						
34.	H ₂ O						
35.	NH ₄ Cl						
36.	Hg						
37.	P ₄						
38.	HCN						
39.	CaO						
40.	N_2H_2						
41.	H ₂						
42.	Pb						
43.	XeF ₂						
44.	SF_4						
45.	SiC						
46.	Si_4H_{10}						
47.	PH ₃						
48.	SiH ₄						
49.	H_2Se						
50.	C_2H_2						
51.	I ₂						
52.	Cu						
53.	AsH ₃						
54.	K ₂ S						

Dougherty Valley HS Chemistry Bonding and Structure – IMF Card Sort and Practice

Name:

Period:

Seat#:

TASK #		ANSWER								
		lonic	(Covalent	Metallic					
1	Sort by: lonic, covalent or metallic									
		Polar			Non-Polar					
2	Sort by: Polar or non-polar									
	Sort by:	Dipole-Dip	ole	Lo	ondon Forces					
3	"Dominant" IMF present – Dipole-dipole or London Forces									
		Hydrogen Bo	nding	No Hydrogen Bonding						
4	Sort by: Hydrogen bonding or No Hydrogen bonding									
		Dipole-Dip	ole	Hydrogen Bonding						
5	Dipole-dipole or hydrogen bonding									
	Sort by:	London Forces	Dip	pole-Dipole	Hydrogen Bonding					
6	IMF present – London, Dipole-dipole, or Hydrogen Bonding									
7	Rank from: Lowest to Highest expected boiling point	Lowest				Highest				
8	Rank from: Lowest to Highest expected boiling point	Lowest				Highest				

Dougherty Valley HS Chemistry Bonding and Structure – IMF Card Sort and Practice

Q #	Questions								
	H ₂ S, O ₂ and CH ₃ OH all have comparable molecular masses. List the dominant type of IMF. (H_2S is bent like water), then rank the strength of each compound based on IMFs within the samples. (1 = strongest, 2 = in between, 3 = weakest). Substance IMF Relative Strength								
1	HBr								
	O_2								
	CH ₃ OH								
	Circle the substances below that can form a hydrogen bond in its pure form. Explain why the other species couldn't hydrogen bond. C_2H_6 CH_3NH_2 KCl $CH_3CH_2CH_2OH$ CH_3OCH_3								
2									
	Rank the following compounds from weakest intermolecular forces to strongest. Justify your answers.								
3									
	Rank the following from weakest intermolecular forces to strongest. Justify your answers.								
	They are all bent like water) H_2Se H_2S H_2Po H_2Te								
4									
	Using your knowledge of melecular structure, identify the main intermelecular force in the following commounds. You may								
	find it useful to draw Lewis structures to find your answer. PF_3 H_2CO HF								
5									
	Explain how dipole-dipole forces cause molecules to be attracted to one another.								
6									
	Explain how London Forces cause molecules to be attracted to one another.								
7									
	Rank the following compounds from lowest to highest boiling point:								
	calcium carbonate, methane, methanol (CH_4O), dimethyl ether (CH_3OCH_3).								
8									
	Explain why nonpolar molecules usually have much lower surface tension than polar ones.								
9									
	What is the difference between a regular dipole-dipole force and a hydrogen bond force? What is an example of hydrogen bonding that occurs in your body?								
10									

Dougherty Valley HS Chemistry Bonding and Structure – IMF Card Sort and Practice

Name:

Period:

Seat#:

Worksheet #15B

Fill out the missing information in the chart below:

Q#	Name		Formula		Type of IMF			
1	Aluminum sulfate							
2	Ammonium phosphate							
3			CO ₂					
4			CaCO₃					
5	Nitrogen trihydride							
6			S ₂ F ₂					
7			P ₃ O ₅					
8	Magnesium nitrate							
9			Pb ₃ P ₂					
Q#	Formula	Lewis Structure		Polar or non-polar?	Q#	Formula	Lewis Structure	Polar or non-polar?
10	CH ₂ F ₂				13	CH₂O		
11	CO ₂				14	SeH₂		
12	NCI ₃				15	NO ₃ -		

Order each group below from strongest to weakest IMF and give the type of IMF:

16	N ₂ , HF, Na, CH ₂ O							
	Formula	– Strongest					Weakest	
	IMF							
17	H ₂ S, NH ₃ , CH ₄ , (NH ₄) ₂ SO ₄							
	Formula	- Strongest					Weakest	
	IMF							