Dougherty Valley HS Chemistry Bonding and Structure – Molecular Geometry Activity

Worksheet #10

Name: Period: Seat#:

<u>Purpose</u>: To construct a series of compounds using the VSEPR model and to use your model to determine the type of bonding and hybridization, and the geometry around each **central** atom.

<u>Pre-Activity Questions:</u> The VSEPR model is based on the premise that electron pairs around a central atom will position themselves to allow for maximum separation. Instead of writing an actual Background Paragraph, just answer these questions below.

the state of the s	
1) What does VSEPR stand for?	3) Name the five different electronic geometries, and the eleven different molecular geometries.
2) Explain why pairs of electrons around a central atom repel each other.	

Materials:

- Computer/Laptop

- Color pencils/markers

Procedure:

- 1. Construct a 3D model for each compound using the online PhET simulation, and then sketch onto your paper.
 - a. https://phet.colorado.edu/sims/html/molecule-shapes/latest/molecule-shapes en.html
 - b. Click to turn on the following:
 - Lone pairs
 - Bond angles
 - Electronic and Molecular Geometry
 - c. Click in the bottom right corner where it says "PhET" and there are three vertical dots
- 2. Click options, then "projector mode" it makes the background white so it is much easier to see things (I think so at least!).
- 3. Draw Lewis Structure
- 4. Determine the following for each atom:
 - a. Number of bonded atoms on center atom, number of lone pairs on center atom.
 - b. AXE formula (A center atom, X number of atoms bonded to the center atom, E number of lone pairs on the center atom)
 - c. Steric Number
- 5. Using the information from Step 2 and a VSPER chart (which should be memorized!), determine the following:
 - a. Electronic Geometry (linear, trigonal planar, tetrahedral, trigonal bi-pyramidal, or octahedral)
 - b. Molecular Geometry (linear, trigonal planar, bent, tetrahedral, trigonal pyramidal, trigonal bi-pyramidal, seesaw, T-shaped, octahedral, square planar)
 - c. Bond angle between the atoms attached to the central atom. (Based on the molecular geometry)
 - d. Type of hybridization of the central atom in each molecule if any (sp, sp², sp³, sp³d, sp³d² remember, d hybridization may not be real!)

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
$\mathrm{NO_3}^-$	AX ₃	# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A	3				

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
SiCl ₄		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
CO_2		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
NClH ₂		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
XeF ₄		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
CH ₂ O		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
SF_6		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
BF ₃		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
$\mathrm{NO_2}^-$		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
SF ₄		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
CIF ₃		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
BrF ₅		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
N_2		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Molecular Formula	AXE Formula	Lewis Structure	Electronic Geometry	Bond Angle	3D Sketch
NH4 ⁺		# v.e- =			
# bonded atoms on A	Steric Number		Molecular Geometry	Hybridization	
# of lone pairs on A					

Done early? You can try doing these too!

CCl₄, NH₃, H₂O, SCl₂, I₃-, SO₂, ICl₄-, AsF₅, IF₄+, H₃O+, TeF₅-, HCN, IOF₅, BrF₃, SO₄²-, CO₃²-

Another teacher made some online card making practices for VSEPR shapes! (please let me know if these links stop working)

- AXE Formulas and Geometry Names https://tinyurl.com/bku42kb6
- Shapes and 3D Models https://tinyurl.com/33357fmc
- AXE Formulas and 3D Shapes https://tinyurl.com/yjsa39xm