Dougherty Valley HS Chemistry Bonding and Structure – IMF Card Sort and Practice

•			
ı	14/2 4/2		44 E
ı	VVOCK	sheet	#15
ı	••••	CIICCE	<i></i>

Name: Period: Seat#:

TASK #			ANSWER					
	Sort by: Ionic, covalent or metallic	lonic (Covalent Metallic				
1								
		Polar		Non-Polar				
2	Sort by: Polar or non-polar							
	Sort by:		Dipole-Dipole		London Forces			
3	"Dominant" IMF present – Dipole-dipole or London Forces							
		Hydrogen Bonding		No Hydrogen Bonding				
4	Sort by: Hydrogen bonding or No Hydrogen bonding							
	Sort by: Dipole-dipole or hydrogen bonding	Dipole-Dipole		Hydrogen Bonding				
5								
	Sort by: "Dominant"		London Forces	Dip	ole-Dipole	Hydrogen Bondir	ıg	
6	IMF present – London, Dipole-dipole, or Hydrogen Bonding							
7	Rank from: Lowest to Highest expected boiling point	Lowest					Highest	
8	Rank from: Lowest to Highest expected boiling point	Lowest					Highest	

Dougherty Valley HS Chemistry Bonding and Structure – IMF Card Sort and Practice

Q #	Questions						
	H_2S , O_2 and CH_3OH all have comparable molecular masses. List the dominant type of IMF. (H_2S is bent like water), then rank the strength of each compound based on IMFs within the samples. (1 = strongest, 2 = in between, 3 = weakest). Substance IMF Relative Strength						
1	HBr $ m O_2$						
	CH ₃ OH						
	Circle the substances below that can form a hydrogen bond in its pure form. Explain why the other species couldn't hydrogen bond. C ₂ H ₆ CH ₃ NH ₂ KCl CH ₃ CH ₂ CH ₂ OH CH ₃ OCH ₃						
2							
	Rank the following compounds from weakest intermolecular forces to strongest. Justify your answers. H_2S I_2 N_2 H_2O						
3							
	Rank the following from weakest intermolecular forces to strongest. Justify your answers. They are all bent like water) H ₂ Se H ₂ S H ₂ Po H ₂ Te						
4							
	Using your knowledge of molecular structure, identify the main intermolecular force in the following compounds. You may find it useful to draw Lewis structures to find your answer. PF ₃ H ₂ CO HF						
5	Third it discribe to draw Ecwis structures to find your answer.						
	Explain how dipole-dipole forces cause molecules to be attracted to one another.						
6							
	Explain how London Forces cause molecules to be attracted to one another.						
7							
·							
	Rank the following compounds from lowest to highest boiling point: calcium carbonate, methanol (CH ₄ O), dimethyl ether (CH ₃ OCH ₃).						
8							
	Explain why nonpolar molecules usually have much lower surface tension than polar ones.						
9							
	What is the difference between a regular dipole-dipole force and a hydrogen bond force? What is an example of hydrogen						
	bonding that occurs in your body?						
10							