Name:

Period:
Seat\#:
Directions: Any worksheet that is labeled with an * means it is suggested extra practice. We do not always have time to assign every possible worksheet that would be good practice for you to do. You can do this worksheet when you have extra time, when you finish something early, or to help you study for a quiz or a test. If and when you choose to do this Extra Practice worksheet, please do the work on binder paper. You will include this paper stapled into your Rainbow Packet when you turn it in, even if you didn't do any of this. We want to make sure we keep it where it belongs so you can do it later if you want to (or need to). If you did the work on binder paper you can include that in your Rainbow Packet after this worksheet. If we end up with extra class time then portions of this may turn into required work. If that happens you will be told which problems are turned into required. Remember there is tons of other extra practice on the class website...and the entire internet! See me if you need help finding practice on a topic you are struggling with.

Directions: Perform each conversion. Show all work, show crossing units out, make sure answer has units. Some answers are at the end so you can check your work as you go!

Mole \rightarrow Mass
(Using molar mass)

1) 10.0 mol Cr
2) $0.160 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
3) 3.32 mol K
4) $5.08 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
5) $2.20 \times 10^{-3} \mathrm{~mol} \mathrm{Sn}$
6) $15.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
7) 0.720 mol Be
8) $4.52 \times 10^{-5} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}$
9) $2.40 \mathrm{~mol} \mathrm{~N}_{2}$
10) $0.0112 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3}$

Mass \rightarrow Mole

(Using molar mass)
11) 72.0 g Ar
12) $27.4 \mathrm{~g} \mathrm{NO}_{2}$
13) $3.70 \times 10^{-1} \mathrm{~g} \mathrm{~B}$
14) $5.00 \mathrm{~g} \mathrm{H}_{2}$
15) 187 g Al
16) $2.64 \times 10^{-4} \mathrm{~g} \mathrm{Li}_{13} \mathrm{PO}_{4}$
17) $333 \mathrm{~g} \mathrm{SnF}_{2}$
18) $11.0 \mathrm{~g} \mathrm{CH}_{4}$
19) $7.21 \times 10^{-2} \mathrm{~g} \mathrm{He}$
20) $847 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

What is the volume of the following gases?

Using molar volume, convert the following quantities.
MOLAR VOLUME says that at "standard" temperature and pressure, one mole of any gas will take up 22.4 L of space. It is a conversion factor!
21) $5.40 \mathrm{~mol} \mathrm{O}_{2}$
22) $3.20 \times 10^{-2} \mathrm{~mol} \mathrm{CO}_{2}$
23) $0.960 \mathrm{~mol} \mathrm{SO}_{3}$

How many moles are in each of the volumes below? (Using molar volume)
24) 89.6 L Ne
25) $1.00 \times 10^{3} \mathrm{~L} \mathrm{C}_{2} \mathrm{H}_{6}$
26) $5.42 \times 10^{-1} \mathrm{~F}_{2}$

Find the number of moles in each of the following. (Using Avogadro's Number)

27) 1.20×10^{25} atoms of P
28) 3.87×10^{21} molecules of AlF_{3}
29) 4.81×10^{14} molecules of NH_{3}

How many molecules are in each of the following?
(Using Avogadro's Number)
30) $1.24 \mathrm{~mol} \mathrm{Cl}_{2}$
31) $4.20 \times 10^{-3} \mathrm{~mol} \mathrm{~K}_{2} \mathrm{~S}$
32) $34.02 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$

Two Step Conversions

(Convert first to moles and then to the desired quantity Do each problem in ONE dimensional analysis set up!)
33) Find the number of molecules in 60.0 g of $\mathrm{N}_{2} \mathrm{O}$.
34) Find the volume of 3.24×10^{22} molecules of Ne
35) Find the mass of $18.0 \mathrm{~L} \mathrm{of} \mathrm{CH}_{4}$
36) Find the volume of 835 g of SO_{3}
37) Find the mass of one atom of nickel.

Mixed Problems

(Do each problem in ONE dimensional analysis set up!)
38) Calculate the molar mass of MgBr_{2}
39) Calculate the molar mass of ammonium phosphate
40) Convert 15 grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ into moles
41) Convert 2.6 moles of sodium oxide to grams
42) Convert 7.4 moles of CH_{4} into molecules
43) Convert 2.8×10^{28} molecules into moles
44) Convert 25 grams of water into molecules
45) Convert 4.5×10^{35} atoms of iron into grams
46) How many atoms are in 50 grams of water
47) How many grams are in 8.5 moles of lithium oxide?
48) How many atoms are in 25 moles of fluorine gas?
49) If a liquid has a density $4.3 \mathrm{~g} / \mathrm{mL}$, how many molecules are in 2.3 L ? (The molar mass is $200 \mathrm{~g} / \mathrm{mol}$)
50) How many grams are in 5.7×10^{26} molecules of dinitrogen hexaiodide?
51) How many atoms are in 45 grams of NH_{3} ?

Answers

1. 520 g
2. 2.88 g
3. 130 g
4. 834 g
5. $\quad 0.261 \mathrm{~g}$
6. $\quad 1470 \mathrm{~g}$
7. 6.48 g
8. $1.27 \times 10^{-3} \mathrm{~g}$
9. $\quad 67.2 \mathrm{~g}$
10. 1.55 g
11. 1.80 mol
12. 0.596 mol
13. $3.43 \times 10^{-2} \mathrm{mo}$
14. 2.50 mol
15. 6.93 mol
16. $2.28 \times 10^{-6} \mathrm{~mol}$
17. 2.13 mol
18. 0.688 mol
19. $1.80 \times 10^{-2} \mathrm{~mol}$
20. 8.82 mol
21. 121 L
22. 0.717 L
23. 21.5 L
24. 4.00 mol
25. 44.6 mol
26. $2.42 \times 10^{-2} \mathrm{~mol}$
27. 19.9 mol
28. $6.43 \times 10^{-3} \mathrm{~mol}$
29. $7.99 \times 10^{-10} \mathrm{~mol}$
30. 7.46×10^{23} molecules
31. 2.53×10^{21} molecules
32. 2.048×10^{25} molecules
33. 8.21×10^{23} molecules
34. 1.21 L
35. 12.9 g
36. 234 L
37. $1 \times 10^{-22} g$
38. $184.1 \mathrm{~g} / \mathrm{mol}$
39. $149.1 \mathrm{~g} / \mathrm{mol}$
40. 0.1896 mol
41. 161.15 g
42. 4.45×10^{23} molec.
43. 4651.2 mol
44. 8.36×10^{23} molec.
45. $4.17 \times 10^{13} \mathrm{~g}$
46. 5.10×10^{24} atoms
47. 253.98 g
48. 3.01×10^{25} atoms
49. 2.98×10^{25} molec.
50. $7.47 \times 10^{5} \mathrm{~g}$
51. 6.36×10^{24} atoms
