

$$Li_3N + 3H_2O \rightarrow NH_3 + 3LiOH$$

Determine the mass of lithium hydroxide produced when 0.83 g of lithium nitride reacts with water.

STOICHIOMETRY

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

How many moles of ethane (C₂H₆) would be needed to react with 1150 g of oxygen?

STOICHIOMETRY

$$5N_2H_4 + 2O_2 \longrightarrow 4H_2O + 3N_2 + 4NH_3$$

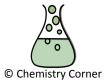
How many liters of N₂H₄ gas at STP are needed to react with 386.70 g O_{2} ?

© Chemistry Corner

STOICHIOMETRY

$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$$

How many grams of Zinc are needed to produce 26.5 g ZnCl₂?



$$Zn_3As_2 + 6HCl \rightarrow 2AsH_3 + 3ZnCl_2$$

How many grams of hydrochloric acid is needed in order to obtain 12.3 L arsine (AsH₃) gas at STP?

STOICHIOMETRY

$$2HF + Ca(OH)_2 \longrightarrow CaF_2 + 2H_2O$$

How many grams of calcium hydroxide are needed to completely react with 18.7 moles of hydrofluoric acid?

STOICHIOMETRY

$$2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$$

How many liters of HCl at STP are produced by reacting 35 g NaCl completely with sulfuric acid?

© Chemistry Corner

STOICHIOMETRY

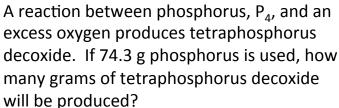
$$CaO + H_2O \longrightarrow Ca(OH)_2$$

How many grams of CaO are needed to produce 25.75 g Ca(OH)₂?

If 95.0 g Zn is added to an excess of H₂SO₄, how many liters of hydrogen gas will be produced at STP?

Write and balance the equation. Then, calculate the liters of hydrogen produced.

STOICHIOMETRY



How many grams of calcium will be needed to produce 13.6 mol CaO?

STOICHIOMETRY

Write and balance the equation. Then, calculate the grams of tetraphosphorus decoxide.

© Chemistry Corner

STOICHIOMETRY

$$2 H_2 O \longrightarrow 2 H_2 + O_2$$

How many moles of H₂O must be decomposed to form 200. mol H₂?

13

If 40.0 grams of sulfur dioxide are formed in the reaction between sulfur and oxygen, what is the mass of oxygen used?

Write and balance the equation. Then, calculate the mass of oxygen used.

© Chemistry Corner

STOICHIOMETRY

14

$$Cu + 2 AgNO_3 \rightarrow 2 Ag + Cu(NO_3)_2$$

If 7.00 moles silver nitrate reacts, what mass of copper (II) nitrate would be formed?

STOICHIOMETRY

15

If 17.6 L C₃H₈, propane gas, reacts with oxygen at STP, how many moles of oxygen are needed?

Write and balance the equation. Then, calculate the moles of oxygen needed.

STOICHIOMETRY

Challenge Question!

Carbon dioxide reacts with ammonia, NH₃, and water producing ammonium bicarbonate. How many <u>kilograms</u> of ammonium bicarbonate are produced if 4575 L of ammonia is reacted at STP?

Write and balance the equation. Then, calculate the moles of oxygen needed.

Stoichiometry Scavenger Hunt Answer Sheet	Name
Date	Period
1.)	
2.)	
3.)	
4.)	
5.)	
6.)	
7.)	
8.)	

KF	Solutions	Quick Answer	QR Code on Card #
1.) 0.83	$\frac{3 \text{ g Li}_{3}\text{N}}{1} x \frac{1 \text{ mol}}{34.83 \text{ g Li}_{3}\text{N}} x \frac{3 \text{ mol LiOH}}{1 \text{ mol Li}_{3}\text{N}} x \frac{23.95 \text{ g LiOH}}{1 \text{ mol LiOH}} = 1.7 \text{ g LiOH}$	1.7 g LiOH	9
2.) 1150	$\frac{0 \text{ g O}_2}{1} x \frac{1 \text{ mol}}{32.00 \text{ g O}_2} x \frac{2 \text{ mol C}_2 \text{H}_6}{7 \text{ mol O}_2} = 10.3 \text{ mol C}_2 \text{H}_6$	10.3 mol C ₂ H ₆	15
3.) 386.70 g	$\frac{g O_2}{32.00 \text{ g } O_2} x \frac{1 \text{ mol } O_2}{2 \text{ mol } O_2} x \frac{5 \text{ mol } N_2 H_4}{2 \text{ mol } O_2} x \frac{22.4 \text{ L } N_2 H_4}{1 \text{ mol } N_2 H_4} = 676.73 \text{ L } N_2 H_4 \text{ @ STP}$	676.73 L N ₂ H ₄ @ STP	5
4.) 26.5	$\frac{\text{g ZnCl}_{2}}{1} x \frac{1 \text{ mol ZnCl}_{2}}{136.29 \text{ g ZnCl}_{2}} x \frac{1 \text{ mol Zn}}{1 \text{ mol ZnCl}_{2}} x \frac{65.39 \text{ g Zn}}{1 \text{ mol Zn}} = 12.7 \text{ g Zn}$	12.7 g Zn	14
5.) <u>12.3</u>	$\frac{\text{L AsH}_{3}}{1} x \frac{1 \text{ mol AsH}_{3}}{22.4 \text{ L AsH}_{3}} x \frac{6 \text{ mol HCl}}{2 \text{ mol AsH}_{3}} x \frac{36.46 \text{ g HCl}}{1 \text{ mol HCl}} = 60.1 \text{ g HCl at STP}$	60.1 g HCl @ STP	1
6.) <u>18.7</u>	$\frac{\text{mol HF}}{1} x \frac{1 \text{ mol Ca(OH)}_2}{2 \text{ mol HF}} x \frac{74.10 \text{ g Ca(OH)}_2}{1 \text{ mol Ca(OH)}_2} = 693 \text{ g Ca(OH)}_2$	693 g Ca(OH) ₂	16
7.) 35 g	$\frac{\text{NaCl}}{1} x \frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}} x \frac{2 \text{ mol HCl}}{2 \text{ mol NaCl}} x \frac{22.4 \text{ L}}{1 \text{ mol HCl}} = 13 \text{ L HCl at STP}$	13 L HCl @ STP	11
8.) 25.7	$\frac{5 \text{ g Ca(OH)}_2}{1} x \frac{1 \text{ mol Ca(OH)}_2}{74.10 \text{ g Ca(OH)}_2} x \frac{1 \text{ mol CaO}}{1 \text{ mol Ca(OH)}_2} x \frac{56.08 \text{ g CaO}}{1 \text{ mol CaO}} = 19.49 \text{ g CaO}$	19.49 g CaO	7

Solutions	Quick Answer	QR Code on Card #
9.) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $\frac{95.0 \text{ g Zn}}{1} x \frac{1 \text{ mol Zn}}{65.39 \text{ g Zn}} x \frac{1 \text{ mol H}_2}{1 \text{ mol Zn}} x \frac{22.4 \text{ L H}_2}{1 \text{ mol H}_2} = 32.5 \text{ L H}_2 \text{ at STP}$	32.5 L H ₂ @ STP	10
10.) $\frac{13.6 \text{ mol CaO}}{1} x \frac{2 \text{ mol Ca}}{2 \text{ mol CaO}} x \frac{40.08 \text{ g Ca}}{1 \text{ mol Ca}} = 545 \text{ g Ca}$	545 g Ca	2
11.) $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$ $\frac{74.3 \text{ g P}_4}{1} x \frac{1 \text{ mol P}_4}{123.88 \text{ g P}_4} x \frac{1 \text{ mol P}_4 O_{10}}{1 \text{ mol P}_4} x \frac{141.94 \text{ g P}_4 O_{10}}{1 \text{ mol P}_4 O_{10}} = 85.1 \text{ g P}_4 O_{10}$	85.1 g P ₄ O ₁₀	13
12.) $\frac{200. \text{ mol H}_2}{1} x \frac{2 \text{ mol H}_2O}{2 \text{ mol H}_2} = 200. \text{ mol H}_2O$	200. mol H ₂ O	3
13.) $S + O_2 \longrightarrow SO_2$ $\frac{40.0 \text{ g SO}_2}{1} x \frac{1 \text{ mol SO}_2}{64.07 \text{ g SO}_2} x \frac{1 \text{ mol O}_2}{1 \text{ mol SO}_2} x \frac{32.00 \text{ g O}_2}{1 \text{ mol O}_2} = 20.0 \text{ g O}_2$	20.0 g O ₂	12
14.) $\frac{7.00 \text{ mol AgNO}_3}{1} x \frac{1 \text{ mol Cu(NO}_3)_2}{2 \text{ mol AgNO}_3} x \frac{187.57 \text{ g Cu(NO}_3)_2}{1 \text{ mol Cu(NO}_3)_2} = 656 \text{ g Cu(NO}_3)_2$	656 g Cu(NO ₃) ₂	6
15.) $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$ $\frac{17.6 \text{ L C}_3H_8}{1} x \frac{1 \text{ mol C}_3H_8}{22.4 \text{ L C}_3H_8} x \frac{5 \text{ mol O}_2}{1 \text{ mol C}_3H_8} = 3.93 \text{ mol O}_2 \text{ at STP}$	3.93 mol O ₂ @ STP	4
16.) $CO_2 + NH_3 + H_2O \longrightarrow NH_4HCO_3$ $\frac{4575 \text{ L NH}_3}{1} x \frac{1 \text{ mol NH}_3}{22.4 \text{ L NH}_3} x \frac{1 \text{ mol NH}_4HCO_3}{1 \text{ mol NH}_3} x \frac{79.07 \text{ g NH}_4HCO_3}{1 \text{ mol NH}_4HCO_3} x \frac{1 \text{ kg NH}_4HCO_3}{1000 \text{ g NH}_4HCO_3} = 16.15 \text{ kg NH}_4HCO_3 @ STP$	16.15 kg NH ₄ HCO ₃ @ STP	8