Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- Determine the mass of each element present in the 1) original compound using dimensional analysis
 - C is always in CO_2 in the ratio of 1 mole CO2 = 1 mole C
 - H is always in H₂O in the ratio of 1 mole H2O = 2 mole H
 - N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!
- Subtract to solve for oxygen 2)
- Sample mass (C_{mass}+H_{mass}+N<sub>mass if necessary, or any other random eler
 </sub> 3)
 - Now continue with the Rhyme from before!
 - Mass to moles
 - Divide by small · Multiply until whole

Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- 1) Determine the mass of each element present in the original compound using dimensional analysis
 - C is always in CO₂ in the ratio of 1 mole CO2 = 1 mole C
 - H is always in H₂O in the ratio of 1 mole H2O = 2 mole H
 - N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!
- 2) Subtract to solve for oxygen
- Sample mass (C_{mass}+H_{mass}+N_{mass if necessary, or any other random element}) Now continue with the Rhyme from before! 3)
 - Mass to moles
 - Divide by small
 - · Multiply until whole

Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- 1) Determine the mass of each element present in the original compound using dimensional analysis
 - C is always in CO₂ in the ratio of 1 mole CO₂ = 1 mole C
 - H is always in H_2O in the ratio of 1 mole $H_2O = 2$ mole H
 - N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!
- 2) Subtract to solve for oxygen
- Sample mass (C_{mass}+H_{mass}+N_{mass} if necessary, or any other random element) 3)
 - Now continue with the Rhyme from before!
 - Mass to moles
 - · Divide by small
 - · Multiply until whole

Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it! 1)

- Determine the mass of each element present in the original compound using dimensional analysis
 - C is always in CO_2 in the ratio of 1 mole $CO_2 = 1$ mole C
 - H is always in H_2O in the ratio of 1 mole H2O = 2 mole H
- N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!

Subtract to solve for oxygen 2)

- Sample mass (C_{mass}+H_{mass}+N_{mass if nece} sary, or any other random ele 3)
 - Now continue with the Rhyme from before!
 - · Mass to moles
 - Divide by small
 - · Multiply until whole

Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it! 1)

Determine the mass of each element present in the original compound using dimensional analysis

- C is always in CO₂ in the ratio of 1 mole CO2 = 1 mole C
- H is always in H₂O in the ratio of 1 mole H2O = 2 mole H
- N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!
- 2) Subtract to solve for oxygen
- Sample mass (Cmass+Hmass+Nmass if nece ssary, or any other random element, 3) Now continue with the Rhyme from before!
 - Mass to moles
 - Divide by small
 - Multiply until whole

Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- 1) Determine the mass of each element present in the original compound using dimensional analysis
 - C is always in CO₂ in the ratio of 1 mole CO2 = 1 mole C
 - H is always in H₂O in the ratio of 1 mole H2O = 2 mole H
 - N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!
- 2) Subtract to solve for oxygen
- Sample mass (C_{mass}+H_{mass}+N_{mass} if necessary, or any other random element) 3) Now continue with the Rhyme from before!
 - Mass to moles
 - Divide by small
 - Multiply until whole

Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it!

- Determine the mass of each element present in the 1) original compound using dimensional analysis
 - C is always in CO₂ in the ratio of 1 mole CO2 = 1 mole C
 - H is always in H₂O in the ratio of 1 mole H2O = 2 mole H
 - N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!
- Subtract to solve for oxygen 2)
- Sample mass (C_{mass}+H_{mass}+N_{mass} if necessary, or any other random element) 3)
- Now continue with the Rhyme from before!
 - Mass to moles
 - Divide by small
 - Multiply until whole

Steps to Solve

Please annotate this list to the side in your notes! It is important that you actually process it and learn it! 1)

- Determine the mass of each element present in the original compound using dimensional analysis
 - C is always in CO₂ in the ratio of 1 mole CO2 = 1 mole C
 - H is always in H₂O in the ratio of 1 mole H2O = 2 mole H
 - N can be (NH₃, N₂, N, NO₂, etc...). If data from a separate experiment, make sure to convert masses to % values!
- 2) Subtract to solve for oxygen
- Sample mass (C_{mass}+H_{mass}+N_{mass if nece} sary, or any other random eler 3) Now continue with the Rhyme from before!

 - · Mass to moles · Divide by small

 - Multiply until whole