Gas Laws Summary Sheet				
Boyle's Law	Charles's Law		Gay-Lussac's Law	Combined Law
for a given mass of gas at constant temperature, the volume of a gas varies <u>inversely</u> with pressure	the volume of a fixed mass of a gas is <u>directly proportional</u> to its Kelvin temperature if the pressure is kept constant		the volume of a fixed mass of a gas is <u>directly proportional</u> to its Kelvin temperature if the pressure is kept constant	combines Boyle's, Charles', and Gay- Lussac's Law into one equation
$P_1V_1 = P_2V_2$ <u>constants</u> amount of gas (moles) temperature	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$ <u>constants</u> amount of gas (moles) pressure		$\frac{P_1}{T_1} = \frac{P_2}{T_2}$ <u>constants</u> amount of gas (moles), volume	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ $\frac{\text{constant}}{\text{amount of gas (moles)}}$
Avogadro's Law	Ideal Gas Law		Dalton's Law	Graham's Law
equal volumes of gases at the same temperature and pressure contain an equal number of particles the volume of a gas at constant temperature and pressure depends on the number of gas particles present $\frac{V_1}{T_1} = \frac{V_2}{T_2}$	relates the press volume, and m the gas constan	sure, temperature, ass of a gas through t 'R' = <i>nRT</i>	at constant volume and temperature, the total pressure exerted by a mixture of gases is equal to the sum of the pressures exerted by each gas Gas Collection Over Water A mixture of gases results whenever a gas is collected by displacement of water. Water vapor is always present at a constant pressure, dependent on temperature, called the vapor pressure of water. $P_{total} = P_1 + P_2 + P_3 \dots P_n$	the rate of effusion/diffusion of two gases (A and B) are inversely proportional to the square root of their molar masses (M). NOT PART OF HONORS CHEMISTRY $\frac{Rate of Gas A}{Rate of Gas B} = \boxed{\frac{M_B}{M_A}}$
<u>constants</u> temperature, pressure				
Abbreviations			Standard Conditions	
atm = atmosphere, mm Hg = millimeters of mercury, torr = another name for mm Hg, Pa = Pascal, kPa = kilopascal, K = Kelvin °C = degrees Celsius		rry, torr = another K = Kelvin	0°C = 273 K 1.00 atm = 760 mm Hg = 76 cm Hg = 101.325 kPa = 101,325 Pa = 29.9 in Hg	
Conversions			Gas Law's Equation Symbols	
$\frac{K = °C + 273}{1 \text{ cm}^3 \text{ (cubic centimeter)}} = 1 \text{ mL (}$ $1 \text{ dm}^3 \text{ (cubic decimeter)} = 1 \text{ L (literation)}$	milliliter) er) = 1000 mL	subscript (1) = initial condition / subscript (2) = final condition TEMPERATURE MUST BE IN <u>KELVIN</u> ! n = number of moles $R = 8.314 \frac{L \cdot kPa}{mol \cdot K}$; 0.0821 $\frac{L \cdot atm}{mol \cdot K}$; 62. $4 \frac{L \cdot torr}{mol \cdot K}$ In order to solve, you <u>must</u> have a common set of units in the problem.		