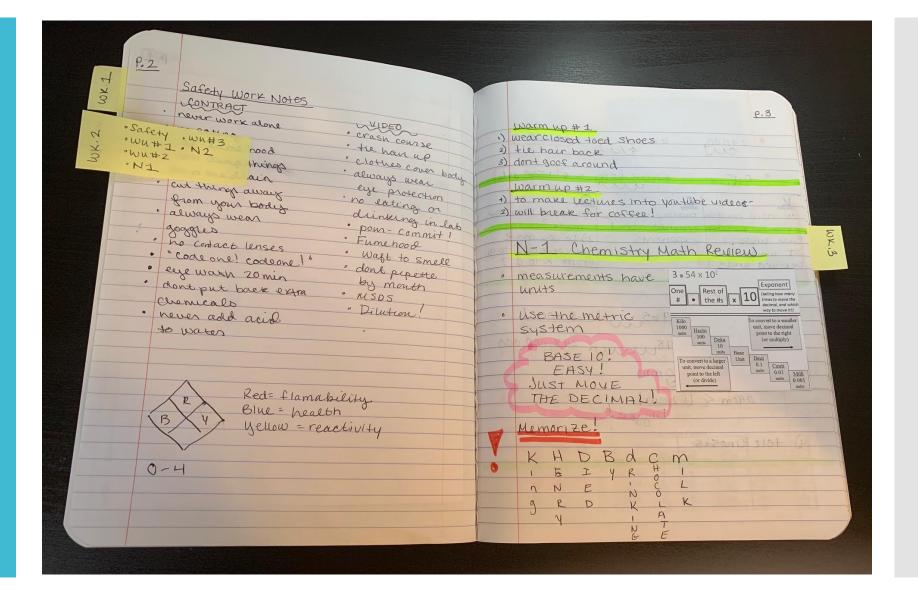
Mrs. Farmer's Example Composition Notebook Honors Chemistry

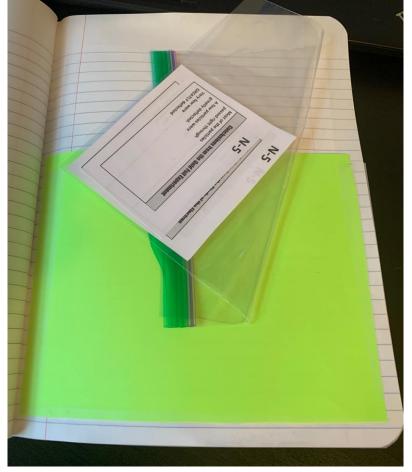
Please note


This is just an example of what your notebook should look like. Yours may have different warmups, different notes depends on the year. Please use this as a general guide only. Read the reference sheets in your 3-ring binder for more specifics

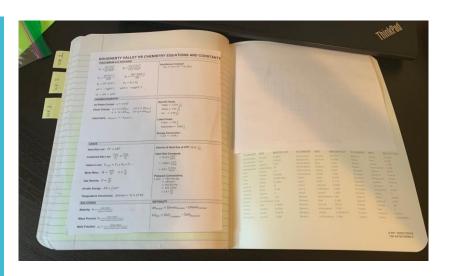
All About Me Page 1

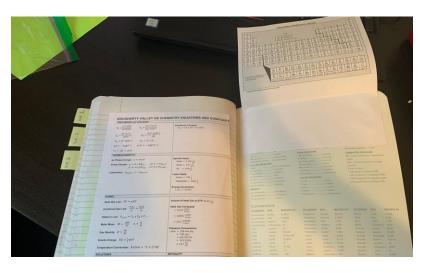
Safety Work Page 2

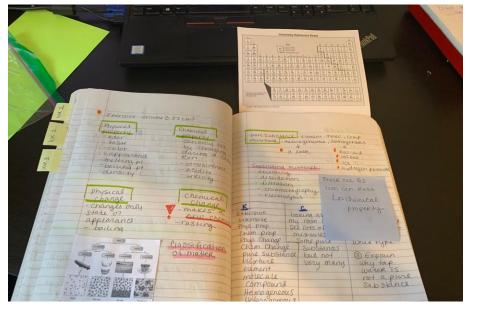
First Warmup
Page 3



Feel Free to add tabs, bookmarks, etc to your notebook! Make it work for you!



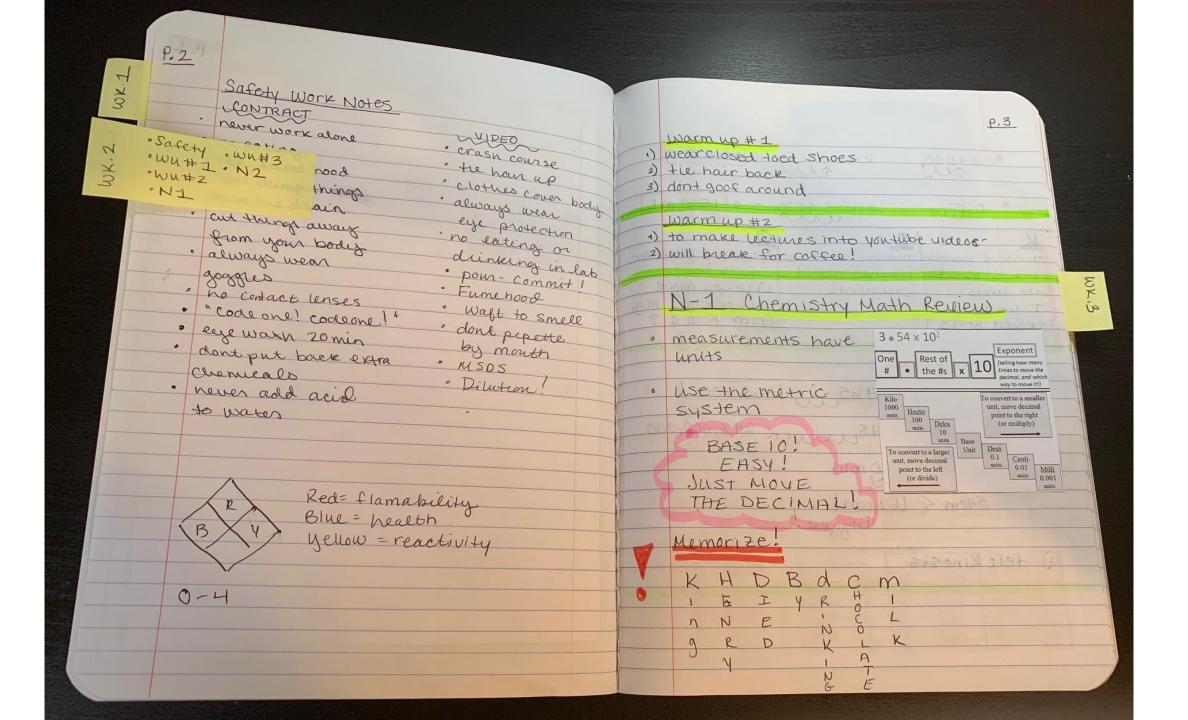

I like to make a pocket in the back to hold a little ziplock bag filled with my Glue Ins for my notes. That way I can print them all at once, cut them to size, and not lose them!

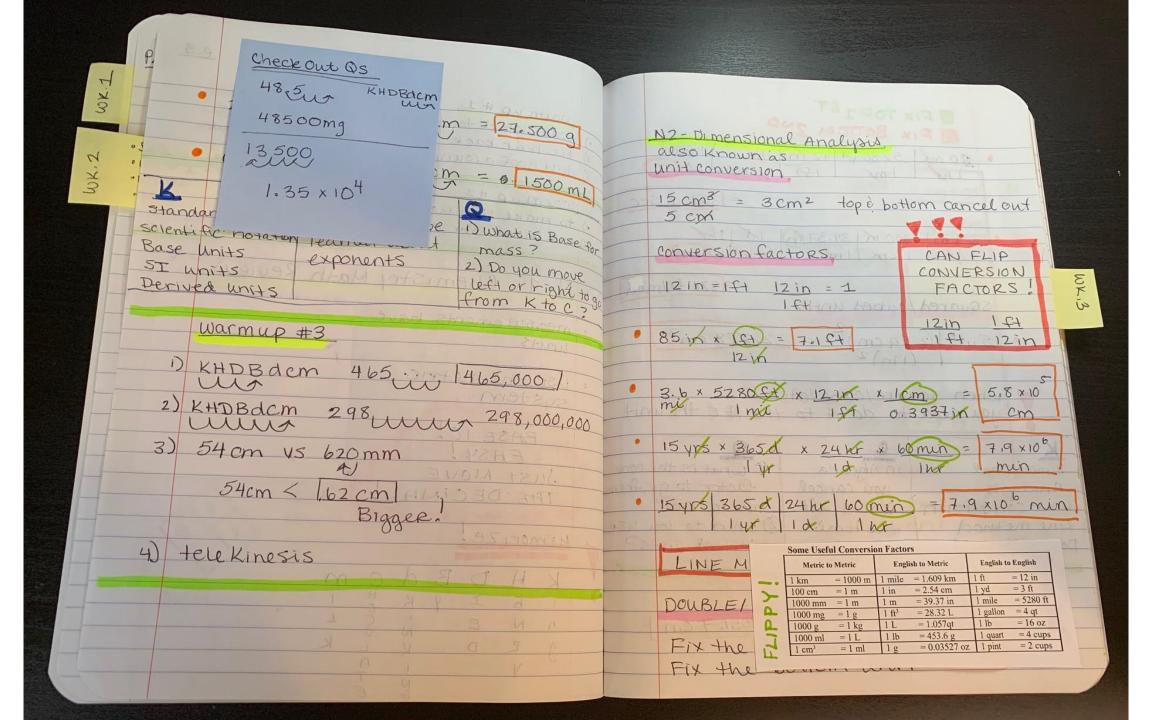


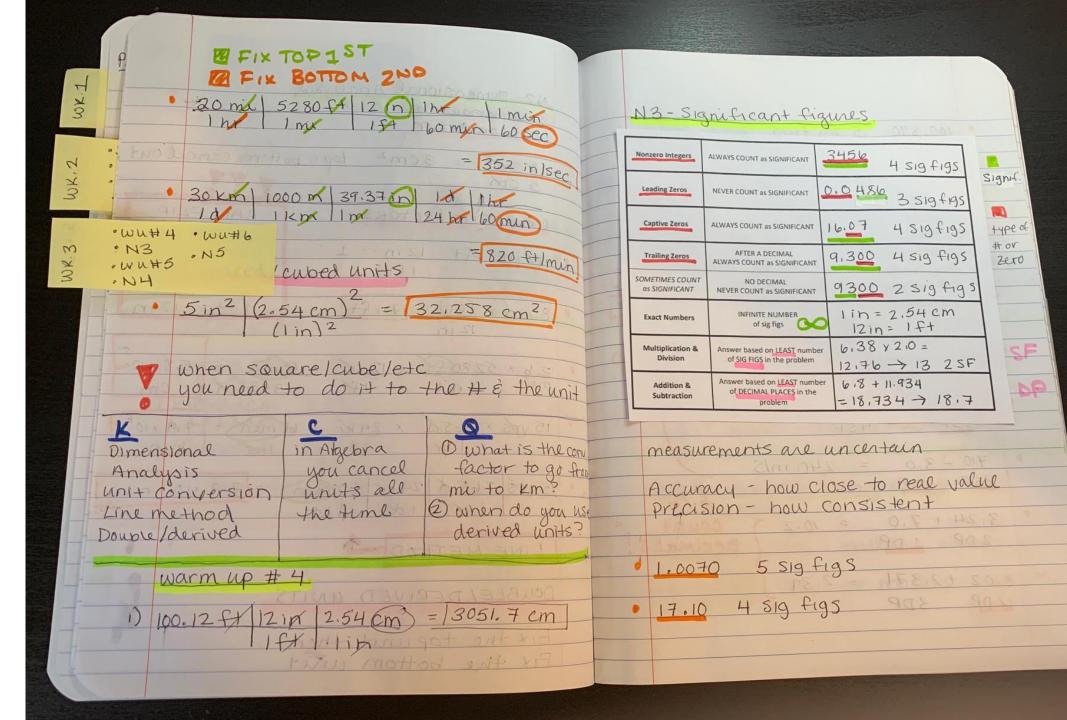
I like to print a small periodic table (you can shrink it down to 75% in the print menu) and then I glue/tape it onto the back inside cover so it flips out of my notebook! Very handy!

The next set of slides are just examples of the first few weeks of warmups and notes. Try to look for the following things.

- Large clear numbering and titles on warmups and notes.
- Highlighter lines separating the different assignments.
- Warmups have numbered questions, show all your work not just an answer!
- Space left in the notes around important points


 do not crowd your notes! We have lots of
 space in our notebooks, use it!
- You can just start the next assignment directly under the highlighter divider – you do not need to start on a new page!


The next set of slides are just examples of the first few weeks of warmups and notes. Try to look for the following things.


- Color Annotations adding a minimum of three additional colors to the notes.
- Color Annotations done in a meaningful way I didn't just scribble the background or highlight every word a different color.
- More is not always better!
- Be careful to not focus on "decorating" or "coloring" your notes – you are supposed to be doing color "annotations." Sometimes people have beautiful notes but they spent more time on what they look like than thinking about what the notes say!

The next set of slides are just examples of the first few weeks of warmups and notes. Try to look for the following things.

- KCQ Boxes added to the end of each set of notes
- Make the boxes fit the work that needs to be in them, don't draw the boxes and then squeeze in the information! Use as much space as needed.
- All key terms, not just words that're new to you!
- Connections can be to previous classes, things you saw on TV etc – but they should be specific.
 Don't just write "7th grade"
- Questions two questions, one lower level, one higher level. You do not have to answer them!

Extensive- volume 0.52 cm ³ Physical Chemical property property odor - can only tell the changing it	pure substance - element, molec., comp. minture - treterogeneous, homogeneous a latte kool-aid
physical change	Separating muxtures hydrogen peroxide - decanting - distillation - fittration - chromatography - erectrolysis Extensive looking around to is salt Intensive my room I can water a pure Phys. prop. See lots of Substance or Chem. prop. mixtures, i a muxture? Phys. Change Some pure what type?
The states companied to the state of the sta	Chem. Change Substances pune substance but not ② Explain nixture very many why texp evement water is molecule not a pune Compound Substance. Hetero geneous

warmup #6

- 1) 4.25 x 4.555 = 19.4
 - (35F) 45F
- 2) 8,345 + 21.6 = 29.4 3 DP (TDP)
- 3) 62/27.44 = 12.3 84 25F) 4SF

N5- Atomic Structure

N-5

-		Dalton's Atomic Theory (180	18)
L	#	Postulate	√ or X
	1	All matter composed of extremely small particles called atoms	1
2		Atoms of a given element are identical in size, mass, and other properties	X
3	12	Atoms of different elements differ in size, mass, and other properties	
4	c	Atoms cannot be subdivided, reated, or destroyed	V
5	fo	toms of different elements combine simple whole-number ratios to rm chemical compounds	
	In	chemical reactions, atoms are mbined, separated, or rearranged	V

Pacton's. Billiard ball model

N-5 electron

Conclusions from the Study of the Electron

identical properties regardless of element used

All elements have same Charge e-5

Atom must have Atoms are neutral + particles b/c e- are negative

little mass compared

Atoms must to the atom's mass have neavier particles too

Thomson 5 Plum pudding model

> 0+0 0,0)

N-5

NICLEUS

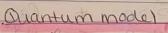
Most of the particles nucleus small passed right through

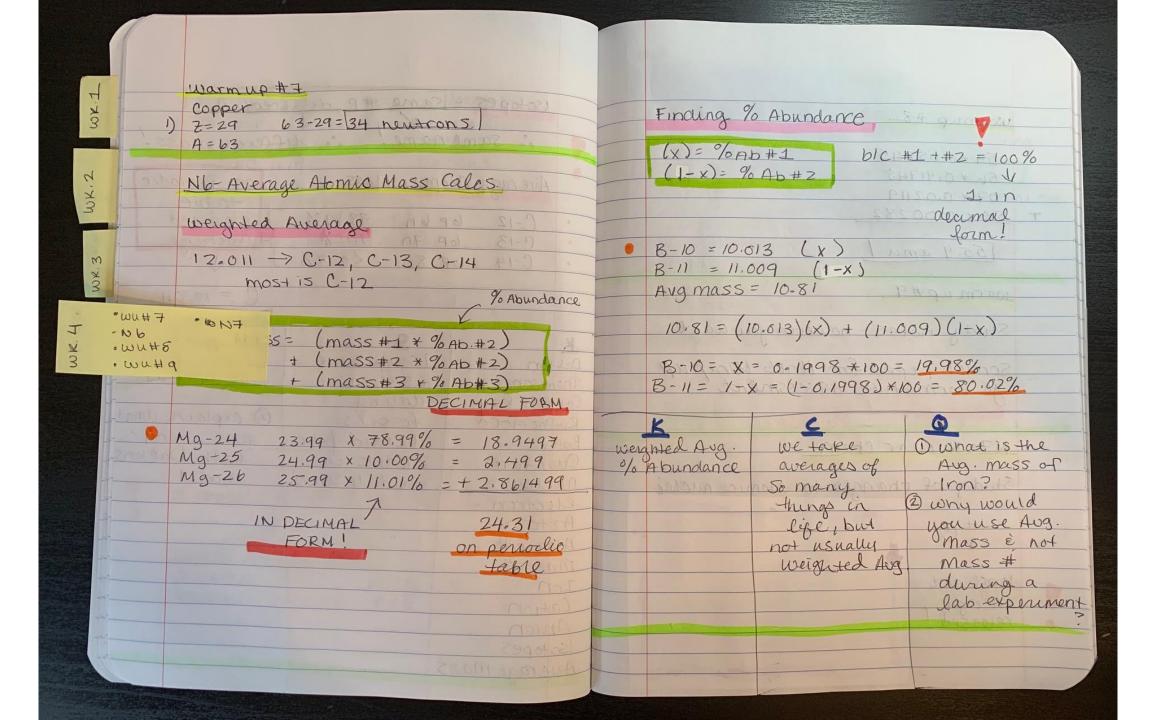
A few particles were nucleus is greatly deflected.

Very few were GREATLY deflected dense,+

mostly empty space

Ruther ford's gold foil experiment


Bohr model


Rutherford's

0 0

WK, 2 WK. 1	54 * 0.05 56 * 0.91 57 * 0.02 + 58 * 0.00 [55,9 an	845 745 119 282	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WK.4 WK.3	warm up# Study not Scratch pag go forma:	es - howeve	er you want wit wrap up
	N7- Nuclea	r Chem	2 - pu A Distance
	laral ant electron reloa sed ene Real tem	Chemical Reactions ccur when bonds are oken oms remain unchanged, hough they may be erranged olive only valence ctrons ociated with small orgy changes ction rate influenced by perature, particle size, centration, etc.	Nuclear Reactions Occur when nuclei emit particles and/or rays Atoms often converted into atoms of another element May involve protons, neutrons, and electrons Associated with large energy changes Reaction rate is not influenced by temperature, particle size, concentration, etc.

N-7

Particle Symbol Alpha ΔHe α Shielding Approx. Energy Paper Clothing 5MeV		Composition	Charge	Mass	
		Helium Nuclei	+2	4 amu	
		Penetrating Power	Change to Mass #	Change to Atomic #	
		Low 0.05mm body tissue	-4		
Particle	Symbol	Composition	Charge	Mass	
Beta e ⁻ β		Like an electron	-1	1/1837 th amu basically 0	
Shielding Approx. Energy Aluminum 0.05- foil 1MeV Particle Symbol Gamma γ		Penetrating Power	Change to Mass #	Change to Atomic # +1 Mass	
		Moderate 4mm body tissue	0		
		Composition	Charge		
		High energy electromagnetic radiation	0		
Shielding	Approx. Energy	Penetrating Power	Change to Mass #	Change to Atomic #	
Lead Concrete	1MeV	High Penetrates easily	0	0	
Proton		Neutron	Positron		
¹ ₁ p		1 ₀ n	0 +1e		

Fission = splitting = combining

marginal unstable # > 82 Stable. #21-82 #1-20 71:1.5 1:1.5 1:1 ratio P:n p:n Hg-200 uranium C-12 plaitonium 80:120 6:6

Strong force - Keeps nuclei together!

PAD

Strong force analogy:
Rope field around
a spring

Neutron bombardment

•
$$2 \cdot \text{on} + \frac{235}{92} \cdot \text{u} \rightarrow 3^{\circ} \cdot \text{le} + \frac{237}{95} \cdot \text{Am}$$

$$(2 \times 0) + 92 = 92$$
 $(3 \times -1) + 95 = 92$

electron capture

$$0 + 218 = 218$$

$$0 + 218 + 0 = 218$$

$$0 + 218 + 0 = 218$$

$$-1e + 85 = 84$$

$$1 + 0 = 84$$

(2x1) + 235 - 23 + (3x0) + 237 - 23 + (2x0) + 237 - 23 + (2x0) + 237 - 23 + (2x0) + 237 - 24 + (2x0) +	positron noutron bombardin	In history we learned about muclear bombs in WWIL writing nuclear eo's is xust algebra.	Owhat are the symbols for & B. 8? O why are some nucleix unstable is some are Stable?		
(210)+92+92 (31-1)+95-92 (1cetron capture)	neutron bombardme e-capture	VES 234 (34)	(2x1)+23		
315 - 218 -	2 P 2 P 1 (1	12 310	21		
	315 = 0 =	1810	815 - 815 10		