### Dougherty Valley HS Chemistry Chemistry Math Basics – Do Not Misplace!

### **Scientific Notation**

Used to express a very large or very small number.

Move the decimal place to the right or to the left to produce a number between 1 and 10.

If you move the decimal to the right, your exponent will be negative.

If you move the decimal to the left, your exponent will be positive.

Adding and Subtracting numbers that are expressed in scientific notation require you to change the numbers so that they have the same exponents, you can do this by moving the decimal around a bit. You can also just use your calculator to add or subtract these numbers.

Multiplying numbers in scientific notation requires you to multiply the first factors then add the exponents.

Dividing numbers in scientific notation requires you to divide the first factors then subtract the exponents.

### **Dimensional Analysis**

Dimensional analysis is a problem solving method that uses conversion factors.

A conversion factor is a ratio of equivalent values. For example; 1000m/1km

In solving dimensional analysis problems you always set the value you want over the value you already have. (What you want over what you got!)

You will cancel units and multiply to achieve your final value.

### **Accuracy and Precision**

Accuracy refers to how close a measured value is to an accepted value.

Precision refers to how close a series of measurements are to one another.

Percent error is the ratio of an error to an accepted value.

Percent error = error/accepted value x 100 and should be expressed as a percentage.

It is irrelevant if the experimental value is larger or smaller than the accepted value.

### **Significant Figures**

Significant figures include all known digits plus one estimated digit.

Non-zero numbers are always significant.

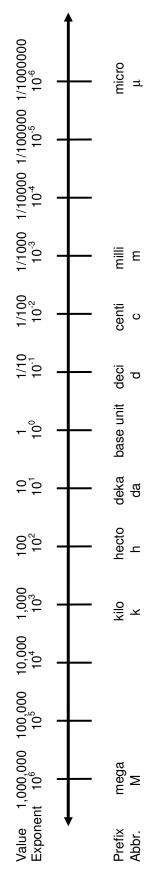
Zeros between non-zero numbers are always significant.

All final zeros to the right of the decimal place are significant.

Zeros that act, as placeholders are not significant.

Counting numbers and defined constants have an infinite number of significant figures.

### **Rounding Numbers**


If the remainder beyond the last digit to be reported is less than 5, drop the last digit.

Rounding to one decimal place, the number 5.3467 becomes 5.3.

If the remainder is greater than 5, increase the final digit by 1. The number 5.798 becomes 5.8 if rounding to 1 digit.

To prevent rounding bias, if the remainder is exactly 5, then round the last digit to the closest even number. Thus the number 3.55 (rounded to 1 digit) would be 3.6 (rounding up) and the number 6.450 would round to 6.4 (rounding down) *if rounding to 1 decimal*.

### Metric Units and Conversions



# Working with quantities that are not in Scientific Notation

- Find the prefix with which you are beginning. If the unit has no prefix attached, you are beginning with the "base unit" at  $10^\circ$ .
- Find the prefix for the answer you are seeking. If the unit has no prefix attached, you are converting to the "base unit" at 10°.
  - Count the number of places on the number line to get from where you are starting to where you are finishing. લં છં
- Now, move the decimal in the number you are converting that same number of places, and in the same direction that you moved on the number line above (if you moved left three spaces, you move the decimal left three spaces to complete the conversion).

Convert 0.035 decimeters (dm) to millimeters (mm)

Solution: The prefix "milli" is two places (two powers of ten) to the right of the prefix "deci." Move the decimal two places to the right.

Answer: 0.035 dm = 3.5 mm

## Working with numbers that are in Scientific Notation

- Find the prefix with which you are beginning. If the unit has no prefix attached, you are beginning with the "base unit" at  $10^\circ$ 
  - Find the prefix for the answer you are seeking. If the unit has no prefix attached, you are converting to the "base unit" at 10°. Count the number of places on the number line to get from where you are starting to where you are finishing. 9 i ω 4 i ι
    - If you moved to the right on the line, add the number of spaces to the exponent on 10.
- If you moved to the left, subtract the number of spaces from the exponent on 10.

Convert 1.35  $\times$  10<sup>2</sup> centigrams (cg) to kilograms (kg)

Solution: The prefix "kilo" is five places (five powers of ten) to the left of the prefix "centi." Subtract five from he exponent.

Answer:  $1.35 \times 10^2$  centigrams =  $1.35 \times 10^{2.5}$  kilograms =  $1.35 \times 10^{-3}$  kg

### Significant Figures in Measurement and Calculations

A successful chemistry student habitually labels all numbers, because the unit is important. Also of great importance is the number itself. Any number used in a calculation should contain only figures that are considered reliable; otherwise, time and effort are wasted. Figures that are considered reliable are called *significant figures*. Chemical calculations involve numbers representing actual measurements. In a measurement, significant figures in a number consist of:

Figures (digits) definitely known + One estimated figure (digit)

In class you will hear this expressed as "all of the digits known for certain plus one that is a guess."

### **Recording Measurements**

When one reads an instrument (ruler, thermometer, graduate, buret, barometer, balance), he expresses the reading as one which is reasonably reliable. For example, in the accompanying illustration, note the



reading marked A. This reading is definitely beyond the 7 cm mark and also beyond the 0.8 cm mark. We read the 7.8 with certainty. We further *estimate* that the reading is five-tenths the distance from the 7.8 mark to the 7.9 mark. So, we estimate the length as 0.05 cm more than 7.8 cm. All of these have meaning

and are therefore significant. We express the reading as 7.85 cm, accurate to three significant figures. All of these figures, 7.85, can be used in calculations. In reading B we see that 9.2 cm is definitely known. We can include one estimated digit in our reading, and we estimate the next digit to be zero. Our reading is reported as 9.20 cm. It is accurate to three significant figures.

### Rules for Zeros

If a zero represents a measured quantity, it is a significant figure. If it merely locates the decimal point, it is not a significant figure.

**Zero Within a Number**. In reading the measurement 9.04 cm, the zero represents a measured quantity, just as 9 and 4, and is, therefore, a significant number. <u>A zero between any of the other digits in a number is a significant figure</u>.

**Zero at the Front of a Number**. In reading the measurement 0.46 cm, the zero does not represent a measured quantity, but merely locates the decimal point. It is not a significant figure. Also, in the measurement 0.07 kg, the zeros are used merely to locate the decimal point and are, therefore, not significant. Zeros at the first (left) of a number are not significant figures.

**Zero at the End of a Number**. In reading the measurement 11.30 cm, the zero is an estimate and represents a measured quantity. It is therefore significant. Another way to look at this: The zero is not needed as a placeholder, and yet it was included by the person recording the measurement. It must have been recorded as a part of the measurement, making it significant. Zeros to the right of the decimal point, and at the end of the number, are significant figures.

**Zeros at the End of a Whole Number**. Zeros at the end of a whole number may or may not be significant. If a distance is reported as 1600 feet, one assumes two sig figs. Reporting measurements in scientific notation removes all doubt, since all numbers written in scientific notation are considered

significant. 1 600 feet  $1.6 \times 10^3$  feet Two significant figures 1 600 feet  $1.60 \times 10^3$  feet Three significant figures 1 600 feet  $1.600 \times 10^3$  feet Four significant figures **Sample Problem #1**: Underline the significant figures in the following numbers.

| (a) 0.0420 cm | answer = 0.0 <u>420</u> cm | (e) 2 403 ft.                | answer = $2 403$ ft.                     |
|---------------|----------------------------|------------------------------|------------------------------------------|
| (b) 5.320 in. | answer = $5.320$ in.       | (f) 80.5300 m                | answer = <u>80.5300</u> m                |
| (c) 10 lb.    | answer = <u>1</u> 0 lb.    | (g) 200. g                   | answer = <u>200</u> g                    |
| (d) 0.020 ml  | answer = 0.0 <u>20</u> ml  | (h) 2.4 x 10 <sup>3</sup> kg | answer = <u>2.4</u> x 10 <sup>3</sup> kg |

### **Rounding Off Numbers**

In reporting a numerical answer, one needs to know how to "round off" a number to include the correct number of significant figures. Even in a series of operations leading to the final answer, one must "round off" numbers. The rules are well accepted rules:

- 1. If the figure to be dropped is less than 5, simply eliminate it.
- 2. If the figure to be dropped is greater than 5, eliminate it and raise the preceding figure by 1.
- 3. If the figure is 5, followed by nonzero digits, raise the preceding figure by 1
- 4. If the figure is 5, not followed by nonzero digit(s), and preceded by an odd digit, raise the preceding digit by one
- 5. If the figure is 5, not followed by nonzero digit(s), and the preceding significant digit is even, the preceding digit remains unchanged

Sample Problem #2: Round off the following to three significant figures.

(a) 3.478 m answer = 3.48 m (c) 5.333 g answer = 5.33 g (b) 4.8055 cm answer = 4.81 cm (d) 4.8055 cm answer = 4.81 cm (e) 4.8055 cm answer = 4.81 cm (e) 4.8055 cm answer = 4.81 cm (f) 4.8055 cm answer = 4.81 cm (g) 4.8055 cm answer = 4.81 cm (g) 4.8055 cm answer = 4.81 cm (h) 4.8055 cm answer = 4.81 cm (e) 4.8055 cm answer = 4.81 cm (f) 4.8055 cm answer = 4.81 cm (f) 4.8055 cm answer = 4.81 cm (g) 4.8055 cm answer = 4.81 cm answ

### **Multiplication**

In multiplying two numbers, when you wish to determine the number of significant figures you should have in your answer (the product), you should inspect the numbers multiplied and find which has the least number of significant figures. This is the number of significant figures you should have in your answer (the product). Thus the answer to 0.024 x 1244 would be rounded off to contain two significant figures since the factor with the lesser number of significant figures (0.024) has only *two* such figures.

Sample Problem #3: Find the area of a rectangle 2.1 cm by 3.24 cm.

Solution: Area =  $2.1 \text{ cm x } 3.24 \text{ cm} = 6.804 \text{ cm}^2$ 

We note that 2.1 contains two significant figures, while 3.24 contains three significant figures. Our product should contain no more than *two* significant figures. Therefore, our answer would be recorded as 6.8 cm<sup>2</sup>

Sample Problem #4: Find the volume of a rectangular solid 10.2 cm x 8.24 cm x 1.8 cm

Solution: Volume =  $10.2 \text{ cm x } 8.24 \text{ cm x } 1.8 \text{ cm} = 151.2864 \text{ cm}^3$ 

We observe that the factor having the least number of significant figures is 1.8 cm. It contains two significant figures. Therefore, the answer is rounded off to 150 cm<sup>3</sup>.

### **Division**

In dividing two numbers, the answer (quotient) should contain the same number of significant figures as are contained in the number (divisor or dividend) with the least number of significant figures. Thus the answer to  $528 \div 0.14$  would be rounded off to contain *two* significant figures. The answer to  $0.340 \div 3242$  would be rounded off to contain three significant figures.

**Sample Problem #5**: Calculate 20.45 ÷ 2.4 Solution: 20.45 ÷ 2.4 = 8.52083

We note that the 2.4 has fewer significant figures than the 20.45. It has only *two* significant figures. Therefore, our answer should have no more than two significant figures and should be reported as 8.5.

### **Addition and Subtraction**

In adding (or subtracting), set down the numbers, being sure to keep like decimal places under each other, and add (or subtract). Next, note which column contains the first estimated figure. This column determines the last decimal place of the answer. After the answer is obtained, it should be rounded off in this column. In other words, round to the least number of decimal places in you data.

**Sample Problem #6**: Add 42.56 g + 39.460 g + 4.1g

Solution:

42.56 g 39.460 g 4.1 g Sum = 86.120 g

Since the number 4.1 only extends to the first decimal place, the answer must be rounded to the first decimal place, yielding the answer 86.1 g.

### **Average Readings**

The average of a number of successive readings will have the same number of decimal places that are in their sum.

**Sample Problem #7**: A graduated cylinder was weighed three times and the recorded weighings were 12.523 g, 12.497 g, 12.515 g. Calculate the average weight.

Solution:

12.523 g 12.497 g 12.515 g 37.535 g

In order to find the average, the sum is divided by 3 to give an answer of 12.51167. Since each number extends to three decimal places, the final answer is rounded to three decimal places, yielding a final answer of 12.512 g. Notice that the divisor of 3 does not effect the rounding of the final answer. This is because 3 is an exact number - known to an infinite number of decimal places.