Periodic Table Structure Info Sheet

Periods (rows) →

Mendeleev – Organized PT based on atomic masses and properties

Groups (columns) ↑

Moseley – Organized PT based on atomic numbers (the way we do it now!)

Three classes of elements: Metals, non-metals, metalloids/semi-metals

3	4	1										1	5	estus 6	7	07780F	Same 9	10
Li	Be												В	С	Ν	0	F	Ne
Na	12 Mg											/	AI	14 Si	P	16 S	17 CI	18 Ar
K	20 Ca		21 Sc	22 Ti	21 V	24 Cr	25 Mn	Fe	27 Co	28 Ni	29 Cu	Zn	Ga	³² Ge	33 As	Se	35 Br	35 Kr
Rb	38 Sr		39 Y	40 Zr	41 Nb	Mo	41 Tc	Ru	45 Rh	46 Pd	Âg	48 Cd	49 In	s Sn	Sb	52 Te	53 	Xe
55 Cs	Ba	57-70 *	71 Lu	n2 Hf	Ta Ta	74 W	Re	76 Os	77 Ir 1927	70 Pt	Au	Hg	TI	Pb	Bi	Po	85 At	Rn
Fr	Ra	89-102 * *	103 Lr	104 Rf	105 Db	Sg	107 Bh	108 Hs	100 Mt	Uun	Uuu	Uub		Uuq				

Color code each class of element. Make a key here

*Lanthanide series	57 La	Ce	50 Pr	Nd	Pm	Sm	Eu	Gd	ES Tb	⁶⁶ Dy	67 Ho	Er	Tm	70 Yb
**Actinide series	B9 Ac	90 Th	91 Pa	92 U	so Np	Pu	Am		97 Bk	SH Cf	59 Es	find Fm	Md	102 No

Metal Properties:

Chemical Prop.	Physical Prop.
Few electrons in VALENCE shell (outer shell)	Ductile Malleable
Lose electrons easily	Good conductors
POSITIVE charge like Ca ²⁺	Shiny
Make Cations	Solid at room temp

Non-metal Properties:

Chemical Prop.	Physical Prop.
Almost full, or totally full valence shell	NOT Ductile NOT malleable
Tend to gain electrons	BAD conductors
NEGATIVE charge like N ³⁻	Mostly solid
Make ANIONS	Some are gas at room temp

Semi-metal Properties:

Chemical Prop.	Physical Prop.
Most have half full valence shell	Have properties of metals AND non-metals
Make anions OR cations depending on their environment	No way to know which properties of each

Things in the same period have:

Increasing atomic # and mass $L \rightarrow R$ Same number of energy levels

> Period 1 has 1 level Period 2 has 2 levels etc...

Things in the same group have:

Increasing atomic # and mass ↓ Same number of valence electrons Exceptions: d and f block Similar physical and chemical properties b/c they have same # of valence e⁻s

Valence Electrons:

Outer electrons

Matches the "A" column number

1A has 1 v.e⁻, 2A has 2v.e⁻, etc.

d and f blocks don't follow rules

Shielding and Z_{eff}:

Outer electrons have trouble "seeing" the protons in the nucleus – the nucleus is "shielded" by the electrons. You can calculate how much "shielding" there is by calculating the "Effective Nuclear Charge"

 $Z_{eff} = Z - S$

Z_{eff} = effective nuclear charge Z = atomic # S = all non-valence electrons

Periodic Table Structure Info Sheet

								1	
;	a 100 100 100 100 100 100 100 100 100 10	70 10 20.18	18 18 39.95	83.80	Xe Xe 13129	86 86 (222)	Uuo (294)		
	4	9 19:00	35.45 35.45	Br 79.90	53 - 26.90 126.90	At At (210)	117 Uus (294?)		
	â	0 16.00	16 S 32.07	selectur 34 Se 78.96	Te 52 Te 127.60	Polonium 84 PO (209)	Uuh 116 (293)	70 70 713.04	102 102 (259)
	5	NBrugae 7 14.01	Prospinors 15 P 30.97	AS 33 AS 74.92	st 51 Sb 121.76	Bi Bi 208.98	Uup (288)	Tman 168.93	Md 101 Md (258)
	7	Gates C 12.01	3800 14 28.09	Ge 32 Ge 72.61	50 Sn 118.71	82 82 Pb 207.20	Uuq (289)	68 68 Er 167.26	100 100 (257)
S	13	Baran B 10.81	Aminun 13 AI 26.98	31 31 69.72	49 114.82	TI 204.38	Uut (284)	istritur 67 HO 164.93	Bostin 39 ES (252)
ment	#	Mass	12	30 Zn 66.39	definition 48 Cd 112.41	Hg 200.59	Cn Cn (285)	Dy 162.50	38 38 Cf (251)
e Lle	Atomic	— Avg.	÷	23 Cu 63.55	47 47 Ag 107.87	73 Au 196.97	Reentperturn 111 (280)	Tataan SS TD 158.93	97 97 (247)
01 10	cury 0 ←	0 29∢	<u>۽</u>	28 Ni 58.69	Pddam 46 Pd 106.42	Pt 78 195.08	Ds Ds (281)	estimation 64 157.25	80 Cm (247)
able	₩e	50C	ச	27 27 58.93	45 Rh 102.91	17 17 192.22	109 109 Mt (276)	Eu Bu 151.97	Amontan 95 AM (243)
aici	ame			Fe 55.85	Ru Ru 101.07	0s 190.23	108 Hs (270)	Sm Sm 150.36	Puration 94 (244)
rerio	ement no	lls.	•	25 Mn 54.94	Tc 43 (98)	Reduct 75 Re 186.21	107 107 (272)	Prometium 61 (145)	8 8 0 7 (7 3 7)
I Ne I	Ē		9	Cr Cr 52.00	More 42 42 MO 95.94	T4 74 W 183.84	Sg (271)	Neosperan 60 144.24	00000000000000000000000000000000000000
	metalc sic ni-metal)		ŝ	Vanadian 23 V 50.94	41 Nb 92.91	Tantation 73 Ta 180.95	Db Db (268)	Pressonation 59 140.91	Protection 91 Pa 231.04
	all metals alline earth i notition met er metals alloids (sen	umetals ogens ble gases	4	72 11 47.88	Zr 21 91.22	172 72 Hf 178.49	Remercion 104 (267)	Ce Ce 140.12	710 232.04
	¥¥£5¥		e	21 21 8 5 44.95	88.91	171 71 174.97	103 113 (262)	Lattaur 57 138.91	88 AC (227)
						57-70 *	89-102 **	anides	tinides
	8	Be 9.01	Mg Mg 24.31	20 Ca 40.08	51 38 51 87.62	Ba 137.33	Radium 88 (226)	*lanth	**30
,	- Hydrogen 1 101	alian 13 194	11 11 22.99	39.10	Rb 85.47 85.47	55 55 132.91	Fr Fr (223)		