Limiting Reagent Walk-Through

$N_2 + 3H_2 \rightarrow 2NH_3$

You start with 115.0g of N_2 and 15.00g of H_2

How many grams of product can you make, and how many grams of the excess (XS) reagent do you have left when done?

STEP #1 - Grams to Moles

Use molar masses to convert from grams to moles:

 115.0 g N₂
 1 mol N₂
 = 4.106 moles N₂

 28.01 g N₂

STEP #2 - Check Mole Ratios

Put the bigger mole ratio coefficient on the top divided by the smaller one (Doesn't really matter but most people find it easier):

Needed Ratio Amounts from Balanced Equation	Ratio with actual molar amounts in the problem	Simplified ratio from actual molar amounts for easier comparison
3 mol H ₂	7.426 moles H ₂	1.809 moles H ₂
1 mol N ₂	4.106 moles N ₂	1 mole N ₂

Compare the needed ratio amounts with the actual ratio of what you have:

3 mol H₂ 1 mol N₂

7.426	moles	H_2
4.106	moles	N_2

1.809 moles H ₂		
$1 \text{ mole } N_2$		

You can see that you do not have the amount of H_2 that you would need! That means H_2 is your Limiting Reagent (LR) and N_2 is in excess (XS).

STEP #3 - Dimensional Analysis with Limiting Reagent

Convert from moles of limiting reactant to desired unit of unknown substance asked for in the problem – use mole highway to determine where to start and end. Example: moles of A \rightarrow moles of B \rightarrow grams of B

 $N_2 + 3H_2 \rightarrow 2NH_3$

XS LR

7.426 moles H₂

STEP #4 - XS Left: Mole Ratio and then Subtract

Use moles of Limiting Reagent and mole ratio to calculate how many moles of Excess Reagent are used up during the reaction:

$3H_2 \rightarrow$	2NH₃
LR	
7.426	
mol H ₂	
1 mol N ₂	= 2.475 moles of N ₂ used during the rxn
3 mol H ₂	0
-	$3H_2 \rightarrow \\ LR \\ 7.426 \\ mol H_2 \\ \hline 1 mol N_2 \\ \hline 3 mol H_2 \\ \hline $

Subtract moles of Excess Reagent you used from the amount of Excess Reagent you started with to determine how much is left over.

4.106 moles N_2 when reaction started

- 2.475 moles of N₂ used during the rxn

= 1.631 moles N₂ left over

STEP #5 - XS Left: Convert to desired unit if needed

Use molar mass to convert from moles to grams (most common unit asked for – if not asking for grams then use mole highway to find a pathway to the desired unit)

 $\begin{array}{c|c} 1.631 \mbox{ mol } N_2 \mbox{ left over } \\ 1 \mbox{ mol } N_2 \end{array} = 45.68 \mbox{ g of } N_2 \mbox{ left over } \\ \end{array}$