
Name: Period: Seat#:

You will use this worksheet to help record a summary of the major topics/ideas/facts for each chapter. Once you have spent some time in class remembering the main topics/ideas/facts for each chapter you will spend some time looking through your old worksheets to try and identify "representative questions" for each chapter – if your teacher could pick only a couple questions from each chapter to put on the final exam, which ones would your teacher pick? It is impossible to cover every single tiny bit of content on a final, so which questions from the year would assess if a student learned the most important aspects of the course?

- Participate in the class poster making activity.
- Use this worksheet during the "gallery walk" to capture the information on the posters.
 - o If you would like more space, you are welcome to use extra paper and staple it to this worksheet!
- Go through your old rainbow packets and identify questions on each worksheet that you think your teacher would consider putting on the final exam.
 - Identify it by worksheet # and question #
- In class your teacher will show you the list they picked.
- Determine if you identified the same exact questions, similar questions, or if you were totally off the mark.
- You do not have to do these practice problems again unless you feel like it would be a good use of your self-study time.

Dougherty Valley HS Chemistry
Spring Final Exam Review

2 nd Semester Topic and Representative Question Identification	
Chapter 12 Kinetics	Chapter 11 Solutions
Chapter 14 Acids and Bases	Chapter 13 Equilibrium

Poster 8 Things from 1st Semester that dont go away 2nd semester!	Poster 7 Common mistakes, warnings, tips, etc
nt go	s, etc

	Representative Questions Identification						
Chapter #	WS #	My Choice	Teacher's Choice of Representative Qs.	Q Matched/ Similar	Off the Mark, Revisit WS	Comments	
	2		13 – 16, 18			Any of the gas laws.	
9	3		5 -6, 8			Ideal Gas Law, gases at STP, and molecular weight of gases	
9	5		8-9, 12 - 13			Dalton's Law, mole ratio of gases, collection of a gas over water	
	8		1 - 3			Gas stoichiometry	

Chapter #	WS #	My Choice	Teacher's Choice of Representative Qs.	Q Matched/ Similar	Off the Mark, Revisit WS	Comments
9	9		2 - 3			More gas stoichiometry – be able to combine with predicting products and balancing
continued	11		3			Calculate molar mas of a gas when collected over water
	1		4, 9, 13			Know vocab and examples
	2		Any!			Use the $q = mC\Delta T$ equation
10	3		7-8			Calorimetry practice
	6		4-13			Know how to use heating and cooling curves to calculate energy gained/lost
	7		19, 21			Molar heat calculations
	1		15 - 21			Interpreting graphical data for solutions and vocabulary
	2		Any!			Calculate concentrations in M, ppm, g/L etc
11	3		Any!			Calculate concentrations in M, ppm, g/L etc
	4		1 - 21			Calculate dilutions using M1V1=M2V2
	5		1 - 13			Calculate dilutions using M1V1=M2V2

Chapter #	WS #	My Choice	Teacher's Choice of Representative Qs.	Q Matched/ Similar	Off the Mark, Revisit WS	Comments
12	3		17, 20			Calculating average rate from data, using rate expression
	4		6 - 10			Calculating rate law and rate constant from data
	5		2, 7, 11			Calculate instantaneous rate, rate law, and predict changes to rate based on changes in concentration of reactants
	2		Any!			Predict changes to equilibrium using Le Chatlier's Principle
	5		11 - 18			Write equilibrium expressions
13	6		1 - 2			Using ICE tables to calculate concentrations of reactants and products at equilibrium, predict shifts using Q compared to Keq
	7		11 - 14			Using ICE tables to predict concentrations of reactants and products at equilibrium
	3		1 - 20			Calculating pH, pOH, [H+], and/or [OH-]
	5		9 - 14			Predicting if a solution is acidic, basic, or neutral based on pH or pOH calculations and using Kw
14	6		Any!			Using ICE tables for calculating pH or pOH, conjugate pairs
14	8		Any!			Predicting if a salt solution is acidic, basic, or neutral.
	9		1 -3			Predicting if a salt solution is acidic, basic, or neutral.
	12		8 - 15			Titration of acids/bases