Chemistry Reference Sheet

i	1 1A 1 H																	18 8A 2 He
81	Hydrogen 1.01 3	2 2A 4	1					(ey				1	13 3A 5	14 4A 6	15 5A 7	16 6A 8	17 7 A 9	Helium 4.00
2	Li Lithium 6.94	Be Beryllium 9.01	11 — Atomic number Na — Element symbol Sodum — Element name											C Carbon 12.01	N Nitrogen 14.01	O Oxygen 16.00	F Fluorine 19.00	Ne Neon 20.18
3	11 Na Sodium	12 Mg Magnesium	3	4	5	22 <u>.</u> 99	—— Ave 7	erage aton 8	9	10	11	12	13 Al Aluminum	14 Si Silicon	15 P Phosphorus	16 S Sulfur	17 CI Chlorine	18 Ar Argon
4	22.99 19 K Potassium	24.31 20 Ca Calcium	3B 21 Sc Scandium	4B 22 Ti Titanium	5B 23 V Vanadium	6B 24 Cr Chromium	7B 25 Mn Manganese		27 Co Cobalt	28 Ni Nickel	1B 29 Cu Copper	2B 30 Zn Zinc	26.98 31 Ga Gallium	28.09 32 Ge Germanium	30.97 33 As Arsenic	32.07 34 Se Selenium	35.45 35 Br Bromine	39.95 36 Kr Krypton
5	39.10 37 Rb Rubidium 85.47	40.08 38 Sr Strontium 87.62	44.96 39 Y Yttrium 88.91	47.87 40 Zr Zirconium 91.22	50.94 41 Nb Niobium 92.91	52.00 42 Mo Molybdenum 95.94	54.94 43 Tc Technetium (98)	55.85 44 Ru Ruthenium 101.07	58.93 45 Rh Rhodium 102.91	58.69 46 Pd Palladium 106.42	63.55 47 Ag Silver 107.87	65.39 48 Cd Cadmium 112.41	69.72 49 In Indium 114.82	72.61 50 Sn Tin 118.71	74.92 51 Sb Antimony 121.76	78.96 52 Te Tellurium 127.60	79.90 53 I lodine 126.90	83.80 54 Xe Xenon 131.29
6	55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)									
					v.													
*	If this numb	er is in par	entheses, th	nen	58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 Ho Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.04	71 Lu Lutetium 174.97
	it refers to the atomic mass of the most stable isotope.					91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (262)
					232.04	201.04	200.00	(201)	(244)	(240)	(241)	(471)	(201)	(202)	(201)	(200)	(200)	(202)

Formulas

Ideal Gas Law: PV = nRT

Calorimetric Formulas -

Combined Gas Law: $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

No Phase Change: $Q = m(\Delta T)C_p$

Pressure Formula: $P = \frac{F}{A}$

Latent Heat of Fusion: $Q = m\Delta H_{\text{fus}}$

Mass-Energy Formula: $E = mc^2$

Latent Heat of Vaporization: $Q = m\Delta H_{\text{vap}}$

Constants

Volume of Ideal Gas at STP: $22.4 \frac{L}{mol}$

Speed of Light in a Vacuum: $c = 3.00 \times 10^8 \frac{\text{m}}{\text{S}}$

Specific Heat of Water: $C_p(H_2O) = 1.00 \frac{\text{cal}}{(\text{g}^{\circ}\text{C})} = 4.18 \frac{\text{J}}{(\text{g}^{\circ}\text{C})}$

Latent Heat of Fusion of Water: $\Delta H_{\text{flus}}(H_2O) = 80 \frac{\text{cal}}{\text{g}} = 334 \frac{\text{J}}{\text{g}}$

Latent Heat of Vaporization of Water: $\Delta H_{\text{vap}}(H_2O) = 540 \frac{\text{cal}}{\text{g}} = 2260 \frac{\text{J}}{\text{g}}$

Unit Conversions

Calorie-Joule Conversion: 1 cal = 4.184 J

Absolute Temperature Conversion: $K = {}^{o}C + 273$

Pressure Conversions: 1 atm = 760 mm Hg = 760 Torr = 101.325 kPa = 14.7 $\frac{\text{lbs.}}{\text{in.}^2}$ = 29.92 in. Hg