Entropy of Reaction

Through Calorimetry....

When studying thermodynamics, the equation for free energy of a reaction, $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$, is often encountered. In this experiment, you will use this equation to estimate the minimum entropy change required to bring about a reaction. The enthalpy change, ΔH , and the initial temperature will be determined for a reaction. From these values and the equation for free energy, the minimum entropy change to bring about a *spontaneous reaction* will be estimated

Procedure...ish

- 1. For each Reaction (each group will have different set of data to use)
 - 1. NaNO₃
 - 2. NH_4CI
 - 3. NH_4NO_3
- 2. Each solution is 50.0 mL of of 1.00 M solution. You will need to calculate the mass needed to prepare this solution based on the sample you have add an image of this calculation into the data table
- 3. Initial temperature will be taken prior to adding the second solution, about 5-10 seconds
- 4. Final temperature is determined when temperature reaches the highest or lowest point then changes direction
- 5. Everyone is given the same Calorimeter Constant Graph
- 6. The data you are using depends on the group # you are given
- 7. Assume the temperature of the reaction in happening at room temp or 25 C°

Some thinking...

- 1. The experiment is based on the fact of the minimum entropy to cause a reaction to occur...
- 2. Need to think about the dividing line of when a reaction can occur or not, is spontaneous or non-spontaneous...
- 3. Based on this, you can solve for ΔS° at 298 K
- 4. There is an assumption that must be made in order to solve this problem... that requires thinking. Do not ask me, I will not tell you this assumption. A big hint was given in #2 above

Calorimeter Constant Graph

- Everyone will use this graph for their Calorimeter calculations
- Click <u>HERE</u> for the logger pro file

Group number corresponds to what data you will use below

Group #	Data to Use	Mass of Solid T ₁ (g)	Mass of Solid T ₂ (g)
1	LINK (NaNO ₃ KH)	4.2043	4.1497
2	LINK (NH ₄ CI KH)	2.6739	2.6638
3	LINK (NH ₄ NO ₃ KH)	4.0043	3.9903
4	LINK (NH ₄ NO ₃ YL)	4.0843	4.0068
5	LINK (NaNO ₃ YL)	4.2734	4.2576
6	LINK (NH ₄ NO ₃ DS)	4.0074 (use T ₂)	4.0046 (use T ₃)
7	LINK (NH ₄ CI YL)	2.6708	2.6503