Reference Sheets – Honors Chem Intro and Unit #1

This is <u>hopefully</u> all the general reference sheets, and Unit #1 Reference Sheets we will use this week in Honors Chem. Due to the challenging logistics of this year, please offer grace if I miss a handout or if things change during the week.

You are not required to print! I understand that may not be possible for everyone. However, if you can print it will make things a little easier! The packet is set up to be printed double sided. Some printers don't print double sided, but you can tell it to print the odd pages first, take the papers that just printed and put them back in the printer tray, and then print the even pages. I am trying to figure out how I can print packets for students and hopefully leave them outside of school for people to pick up if they want a packet. As soon as I know whether or not this is allowed I will let you know!

<u>Please note</u> – I will never ask you to print this many pages in a single document again! These are all of the "reference pages" that we use all year long. All of these pages are on the class website, always! <u>www.mychemistryclass.net</u>

Please keep in mind that we are operating under the assumption that we will return to school at some point this year! So make sure you are <u>doing</u> your work, <u>keeping</u> your work, and keeping it <u>organized!</u> I will check your 3-ring binder and composition book when we return so you want to make sure you are setting yourself up for success by doing your work now!

Sections of your 3-ring Binder

- R reference section
- S study materials
- WS worksheet from a rainbow packet

N – notes, will be numbered N1, N2, etc (a glue in for your composition book)

			-943					i
	18 8A 8A 4.00	10 Neon 20.18	Argon 39.95 36	Krypton 83.80	54 Xenon 131.29	86 Rad on (222)	118 Oganesson (294)	71 Lutetium 174.97 103 Lawrencium (262)
	17 7A	9 Huorine 17 17	Chlorine 35.45	Bromine 79.90	53 I lodine 126.90	85 At Astatine (210)	117 Ts Tennessine (294)	70 70 713.04 173.04 102 102 Nobelium (259)
	16 6A	000 16.00	Sultur 32.07 34	Selenium 78.96	52 Te 127.60	84 Polonium (209)	116 Lv Livermorium (293)	69 Thulium 168.93 101 Mendelevium (258)
	15 5A	Nitrogen 14.01	Phosphorus 30.97 33	AS Arsenic 74.92	51 Sb Antimony 121.76	83 Bi Bismuth 208.98	115 MC Moscovium (289)	68 Erbium 167.26 167.26 Fermium (257)
	14 44	6 Carbon 12.01	Silicon 28.09 32	Germanium 72.61	50 Sn ^{Tin} 118.71	82 Pb Lead 207.2	114 Flerovium (289)	67 Holmium 164.93 99 Einsteinium (252)
et	3A 3A	5 Boron 10.81	Aluminum 26.98 31	Gal lium 69.72	49 Ind Indium 114.82	81 TI Thallium 204.38	113 Nh (286)	66 Dysprosium 162.50 98 Californium (251)
She(12 2B 30	ZI nc 55.39	48 Cd Cadmium 112.41	80 Hg Mercury 200.59	112 Copernicium (285)	65 Terbium 158.93 97 Berkelium (247)
nce			11 11 11 11 11 11 11 11 11 11 11 11 11	Copper 63.55	47 Ag Silver 107.87	79 Au Gold 196.97	111 Rg Roentgenium (280)	64 Gadolinium 157.25 96 Cm Curium (247)
fere	ey	ey mic number ment symbol ment name srage atomic mass [*]	10	Nickel 58.69	46 Pd Palladium 106.42	78 Pt Platinum 195.08	110 DS Darmstadtium (281)	63 Europium 151.96 95 Americium (243)
y Re			9 	Cobalt 58.93	45 Rh odium 102.91	77 Ir 1ridium 192.22	109 Meitherium (268)	62 Samarium 150.36 94 Plutonium (244)
histr			8 28	Fe Iron 55.85	44 Bu Ruthenium 101.07	76 OS 05mium 190.23	108 Has sium (269)	61 Promethium (145) 93 93 Neptumium (237)
hen	×		7 7B 25	NIN Manganese 54.94	43 Tc ^{Technetium} (98)	75 Re Rhenium 186.21	107 Bh Bohrium (264)	60 Neodymium 144.24 92 Uranium 238.03
O		22.90	6 68 24	Chromium 52.00	42 Mo Molybdenum 95.94	74 W Tungsten 183.84	106 Sg Seaborgium (266)	59 Praseodymium 140.91 91 Protactinium 231.04
			5 5B 23	Vanadium 50.94	41 Niobium 92.91	73 Ta Tantalum 180.95	105 Db Dubnium (262)	58 Certum 140.12 90 90 232.04
			4 4 22	Titanium 47.87	40 Zr Zirconium 91.22	72 Hf Hafnium 178.49	104 Pf Rutherfordium (261)	ue
			38 33 54	Scandium 44.96	39 Yttrium 88.91	57 La Lanthanum 138.91	89 Actinium (227)	entheses, tt nass of the
	2 S	Beryllium 9.01	Magnesium 24.31 20	Calcium 40.08	38 Strontium 87.62	56 Ba Barium 137.33	88 Radium (226)	ber is in par the atomic r isotope.
	1A 1 Hydrogen	3 Lithium 6.94	Sodium 22.99	Potassium 39.10	37 Rubidium 85.47	55 CS Cesium 132.91	87 Fr Francium (223)	If this numl it refers to 1 most stable
		N	с у	4	ŝ	Q	~	*

Copyright © 2008 California Department of Education

R-1

ļ

Memorize this stuff NOW! Pop quizzes all year long!

Ion Sheet

+++ Positive Ions +++

1+	2+	3+	4+
Ammonium, NH_4^+	Cadmium(II), Cd ²⁺	Chromium(III), Cr ³⁺	Lead(IV), Pb ⁴⁺ (<i>Plumbic</i>)
Copper(I), Cu ⁺ (<i>Cuprous)</i>	Chromium(II), Cr ²⁺	Cobalt(III), Co ³⁺	Manganese(IV), Mn4+
Silver, Ag⁺	Cobalt(II), Co ²⁺	Gold(III), Au ³⁺	Silicon(IV), Si ⁴⁺
Gold (I), Au ⁺	Copper(II), Cu ²⁺ (<i>Cupric</i>)	Iron(III), Fe ³⁺ (<i>Ferric</i>)	Tin(IV), Sn ⁴⁺ (<i>Stannic</i>)
	Iron(II), Fe ²⁺ (<i>Ferrous</i>)	Manganese(III), Mn ³⁺	
And all elements in	Lead(II), Pb ²⁺ (<i>Plumbous</i>)	Nickel(III), Ni ³⁺ Boron,	And Group 4A can
Group IA	Manganese(II), Mn ²⁺	B ³⁺ Aluminum, Al ³⁺	potentially make 4+ if
-	Mercury(II), Hg ²⁺ (<i>Mercuric</i>)	Gallium, Ga ³⁺ Indium,	under right
	Nickel(II), Ni ²⁺	In ³⁺	circumstances
	Tin(II), Sn ²⁺ (Stannous)		
	Zinc, Zn ²⁺		
	Mercury(I), Hg ₂ ²⁺ (<i>Mercurous</i>)		
	And all elements in Group 2A		

--- Negative lons ----

1-	2-	3-	4-
Acetate, $C_2H_3O_2^-$	Carbonate, CO_3^{2-}	Phosphate, PO4 ³⁻	Carbide, C ⁴⁻
Bicarbonate, HCO_3^-	Peroxide, O_2^{2-}	Phosphide, P ³⁻	
Chlorate, CIO_3^-	Sulfate, SO ₄ ²⁻	Phosphite, PO ₃ ^{3–}	And Group 4A can
Chlorite, CIO_2^-	Sulfite, SO_3^2 -Chromate,	Arsenate, AsO ₄ ^{3–}	potentially make 4- if
Cyanide, CN⁻	CrO_4^{2-} Dichromate, $Cr_2O_7^{2}$		under right
Hydroxide, OH [−]	$^{-}$ Oxalate, C ₂ O ₄ ²⁻	And all	circumstances
Hypochlorite, CIO [−]	Thiosulfate, $S_2O_3^{2-}$	elements in	
Nitrate, NO ₃ ⁻		Group 5A	
Nitrite, NO_2^-	And all elements in		
Perchlorate, CIO_4^-	Group 6A		
Permanganate, MnO ₄ ⁻			
Thiocyanate, SCN⁻			
And all elemens in Group 7A (Halogens)			

Pre	fixes	Common Molecular Gases	Common A	cids	Diatomic I	Elements
One- mono Two- di Three- tri Four – tetra Five- penta	Six – hexa Seven – hepta Eight – octa Nine – nona Ten - deca	F ₂ , Cl ₂ , H ₂ , N ₂ , O ₂ , SO ₂ , SO ₃ , CO, CO ₂ , H ₂ S, NO, NO ₂ , NH ₃ , P ₂ O ₃ , P ₂ O ₅ , SiF ₄ , HCl, HBr,	Hydrochloric acid Sulfuric acid Nitric Phosphoric Acetic	HCI H ₂ SO ₄ HNO ₃ H ₃ PO ₄ HC ₂ H ₃ O ₂	Hydrogen Nitrogen Oxygen Flourine Chlorine	$\begin{array}{c} H_2\\ N_2\\ O_2\\ F_2\\ Cl_2 \end{array}$
		HI. HF. N ₂ O ₅ , N ₂ O ₃ ,	Common E	Base	Bromine	Br ₂
		N ₂ O	Ammonia	NH ₃	lodine	I ₂

Polyatomic	Ions Containing Oxygen**	Acid Nomenclature*		
Perate	Greatest number of oxygens	Peric	Greatest number of oxygen atoms	
ate	Greater	ic	Greater	
ite	Smaller	- ous	Smaller	
Hypoite	Smallest number of oxygens	Hypoous	Smallest number of oxygen atoms	

*Acids- Acids are molecular compounds that contain hydrogen bonded to a nonmetal to a group of atoms that behave like a nonmetal. Acids can be either binary or ternary compounds. The names of binary acids have the form Hydro-.....ic acids. The names of ternary acids use a series of prefixes and suffixes to specify the relative number of oxygen atoms in the molecule.

**Names of polyatomic ions containing oxygen- some elements form several polyatomic ions with oxygen. A series of suffixes and prefixes is used to specify the relative number of oxygen atoms.

Common lons

?*********	I
• R-2 !	
	ì

+++ **Positive Ions** +++

1+	2+	3+	4+
$1+$ Ammonium, NH_4^+ Copper(I), Cu^+ (<i>Cuprous</i>)Silver, Ag^+ Gold (I), Au^+ And all elements inGroup IA	2+ Cadmium, Cd^{2+} Chromium(II), Cr^{2+} Cobalt(II), Co^{2+} Copper(II), Cu^{2+} (<i>Cupric</i>) Iron(II), Fe^{2+} (<i>Ferrous</i>) Lead(II), Pb^{2+} (<i>Plumbous</i>) Manganese(II), Mn^{2+} Mercury(II), Hg^{2+} (<i>Mercuric</i>) Nickel(II), Ni^{2+} Tin(II), Sn^{2+} (<i>Stannous</i>)	$\begin{array}{c} \textbf{3+}\\ \hline \\ \text{Chromium(III), } Co^{3+}\\ \text{Cobalt(III), } Co^{3+}\\ \text{Gold(III), } Au^{3+}\\ \text{Iron(III), } Fe^{3+} (Ferric)\\ \hline \\ \text{Manganese(III), } Mn^{3+}\\ \text{Nickel(III), } Ni^{3+}\\ \text{Boron, } B^{3+}\\ \text{Aluminum, } Al^{3+}\\ \text{Gallium, } Ga^{3+}\\ \text{Indium, } In^{3+}\\ \end{array}$	4+ Lead(IV), Pb ⁴⁺ (<i>Plumbic</i>) Manganese(IV), Mn ⁴⁺ Silicon(IV), Si ⁴⁺ Tin(IV), Sn ⁴⁺ (<i>Stannic</i>) And Group 4A can potentially make 4+ if under right circumstances
	Zinc, Zn^{2+} Mercury(I), Hg_2^{2+} (<i>Mercurous</i>)		
	And all elements in Group 2A		

--- Negative lons ---

1-	2-	3-	4-
Acetate, $C_2H_3O_2^-$ Bicarbonate, HCO_3^- Chlorate, CIO_3^- Chlorite, CIO_2^- Cyanide, CN^- Hydride, H^- Hydroxide, OH^- Hypochlorite, CIO^- Nitrate, NO_3^- Nitrite, NO_2^- Perchlorate, CIO_4^- Permanganate, MnO_4^- Thiocyanate, SCN^- And all elemens in Group 7A (Halogens)	Carbonate, CO_3^{2-} Peroxide, O_2^{2-} Sulfate, SO_4^{2-} Sulfite, SO_3^{2-} Chromate, CrO_4^{2-} Dichromate, $Cr_2O_7^{2-}$ Oxalate, $C_2O_4^{2-}$ Thiosulfate, $S_2O_3^{2-}$ And all elements in Group 6A	Phosphate, PO4 ³⁻ Phosphide, P ³⁻ Phosphite, PO3 ³⁻ Arsenate, AsO4 ³⁻ And all elements in Group 5A	Carbide, C ^{4–} And Group 4A can potentially make 4- if under right circumstances

Prefixes	Common Molecular Gases	Common Acids	Diatomic Elements
One-monoSix –hexaTwo-diSeven –heptaThree-triEight –octaFour –tetraNine –nonaFive-pentaTen -deca	F ₂ , Cl ₂ , H ₂ , N ₂ , O ₂ , SO ₂ , SO ₃ , CO, CO ₂ , H ₂ S, NO, NO ₂ , NH ₃ , P ₂ O ₃ , P ₂ O ₅ , SiF ₄ , HCl, HBr,	Hydrochloric acidHCISulfuric acid H_2SO_4 Nitric HNO_3 Phosphoric H_3PO_4 Acetic $HC_2H_3O_2$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	HI. HF. N ₂ O ₅ , N ₂ O ₃ ,	Common Base	Bromine Br ₂
	N ₂ O	Ammonia NH ₃	

Polyatomic	Ions Containing Oxygen**	Acid Nomenclature*		
Perate	Greatest number of oxygens	Peric	Greatest number of oxygen atoms	
ate	Greater	ic	Greater	
ite	Smaller	OUS	Smaller	
Hypoite	Smallest number of oxygens	Hypoous	Smallest number of oxygen atoms	

*Acids- Acids are molecular compounds that contain hydrogen bonded to a nonmetal to a group of atoms that behave like a nonmetal. Acids can be either binary or ternary compounds. The names of binary acids have the form Hydro-.....ic acids. The names of ternary acids use a series of prefixes and suffixes to specify the relative number of oxygen atoms in the molecule.

**Names of polyatomic ions containing oxygen- some elements form several polyatomic ions with oxygen. A series of suffixes and prefixes is used to specify the relative number of oxygen atoms.

Dougherty Valley HS Honors Chemistry Strong Acid, Strong Base Handout

7 Strong Acids (H ⁺) All other acids are weak			8 Strong Bases (OH ⁻) All other bases are weak		
Hydrochloric acid	HCI		Lithium hydroxide	LiOH	
Hydrobromic acid	HBr		Sodium hydroxide	NaOH	
Hydroiodic	HI		Potassium hydroxide	KOH	
Perchloric acid	HCIO ₄		Rubidium hydroxide	RbOH	
Chloric acid	HCIO ₃		Cesium hydroxide	CsOH	
Nitric acid	HNO ₃		Calcium hydroxide	Ca(OH) ₂	
Sulfuric acid H_2SO_4			Strontium hydroxide	Sr(OH) ₂	
			Barium hydroxide	Ba(OH) ₂	

Memorize these 15, ALL ELSE ARE considered WEAK

How to Set Up Your Warm-ups in Honors Chem

- Warmups are graded assignments.
- If you are absent you are required to make up the missed Warmups.
- You are responsible for knowing, understanding, and following the formatting requirements.
- If you have questions about the formatting requirements it is your responsibility to ask.
- See the back of this paper for more details.

More Details about WARMUPS

- 1) Warmups are to be completed in your composition book only. No paper(s) can be stapled, taped, etc. into the book and receive credit.
- 2) Student may only receive up to FULL credit if the work is done in the composition book on that date.
- 3) Composition books will be graded in class the same day whenever possible. You may sometimes leave them in class to be graded. Sometimes they will be graded later, or not at all.
- 4) When graded they may be graded for completion and/or accuracy. Sometimes part of the grade will be whether or not you finished your notes from the previous lesson.
- 5) Following instructions regarding formatting is not optional. If you do not follow the instructions you will not receive full credit.

Possible Situations:

- 1) **ABSENT**:
 - You can find the warmups on the class website. If possible, please print at home and glue into your notebook and complete at home before returning to school so you are not behind.
 - If you cannot print at home as described above, then you must get the warmup slip from the absent bin and do the warmup
 - SHOW me that it was completed according to the standard absent procedure you get the number of days as you were absent. Absent one day, you get one day. Absent two days, you get two days.
 - o If shown to me within the allotted number of days, I will stamp it.
 - If there is no stamp for being absent, the students will earn no more than 50% of the points possible.

2) FORGOT TO BRING COMPOSITION BOOK TO CLASS:

- If a Warmup is completed on paper other than in the composition book, you cannot receive full credit.
- When a Warmup is transferred into your composition book (as in written in), there will be no handwritten grade, but there will be a Transfer Stamp, therefore they may earn up to 75% of possible points for that specific Warmup.
- You must show me your original graded Warmup in order to get a Transfer stamp to show that you have transferred the Warmup from binder paper into your composition book.
- If there is no stamp for the transfer, you will only be eligible to earn 50% of the points possible.
- Transfer of work into the composition book must occur by the **NEXT** school day.
- Transfer. Means to re-write the information in the composition book, not staple, tape, etc... the paper into the composition book

3) LOST COMPOSITION BOOK:

- Don't lose your composition book...
- If you lose your composition book you will not have any of the handwritten grades, so there is no record of your scores. Therefore, your redone work will only be eligible to earn up to 50% of the points possible.
- I strongly suggest you scan or take pictures of your composition book to keep a record of your scores just in case you may have lost it.
 - If you do this, YOUR FULL NAME and THE DATE in INK must be written on each page so I know it is your work.

*Requirements, formatting instructions, grading procedures, etc are subject to change at teacher's discretion. If changes are made you will be notified in class.

* If a situation arises that is not discussed above, it is your responsibility to bring it to the teacher's attention immediately. If you have questions it is your responsibility to bring it to the teacher's attention immediately.

How to Set Up Your Notes in Honors Chem

- Notes are graded assignments.
- If you are absent you are required to make up the missed Notes.
- Your notes need to look readable to another person, and should not be cramped together. Use space!
- KCQ Boxes are required to be finished by the start of the next class period. All efforts will be made to post this on School Loop each day, but it is expected and required even if something happens and it is not posted. You now know it is a daily requirement!
- You are responsible for knowing, understanding, and following the formatting requirements.
- If you have questions about the formatting requirements it is your responsibility to ask.
- Notes should reflect effort, thought, detail, reflection, and should demonstrate processing and learning taking place.

EXAMPLE GRADING RUBRIC

This example gives you an idea of the types of things I look for when grading notebooks. This is not a guaranteed format or amount of points, it is simply an example to help guide you into doing complete and quality work. Notebook checks will be announced and unannounced. No points will be awarded if you fail to have your notebook on a collection day, either announced or unannounced.

Chapter 14 Composition Notebook Grade Sheet								
Name:				Period:	Seat #:			
ITENA					SCOPE			
Acids and Bases and nH		No title		Min. Color &/or not used meaningfully	10			
calculations		Non-descriptive/obvious title		No KCQ boxes				
pH Calculations Chart		Incomplete notes lacking info		KCQ incomplete/lacking effort/detail				
pH Square x 2		No color		Other				
N47		No title		Min. Color &/or not used meaningfully	10			
Nomenclature, Strong		Non-descriptive/obvious title		No KCQ boxes				
Acids/Bases, Ionization		Incomplete notes lacking info		KCQ incomplet /lacking effort/detail				
of Water Naming Glue In		No color		Other				
		Missing	50	And the stamp	5			
Warmup #22		Not graded	5/1	Other				
N48		No title		Min. Co r & r ot used meaningfully	10			
Weak Acids and Bases		Non-docrission obvious title	Π.	NCCO boxes				
Glue In		Incom ete tes lacking info	a ('	20 incomplete/lacking effort/detail				
Practice Problems x 2		No color	Ð,	Other				
		Missing Missing		No transfer stamp	5			
Warmup #223		Not gra		Other				
Warmun #24		Missing		No transfer stamp	5			
wainiup #24		Not graded		Other				
N49		No title		Min. Color &/or not used meaningfully	10			
Salts		Non-descriptive/obvious title		No KCQ boxes				
Steps Glue In		Incomplete notes lacking info		KCQ incomplete/lacking effort/detail				
Chart Glue in x 2		No color		Other				
N/49		No title		Min. Color &/or not used meaningfully	10			
Titrations Hands On		Non-descriptive/obvious title		No KCQ boxes				
Lecture		Incomplete notes lacking info		KCQ incomplete/lacking effort/detail				
		No color		Other				
			<u>Tot</u>	<u>al_</u> 65				

ONLY BLACK OR BLUE PEN

GENERAL GUIDELINES

- All sections must be clearly labeled.
- Sections must be done in the order listed here.
- Headers must be filled out at the top of every page used in your lab notebook.
- This will be collected prior to the beginning of lab (except the data tables which are made before the lab, but on a separate page in your lab notebook so you can fill them out during lab).
- You may not participate in a lab without having it completed.
- Will sometimes be graded for completion and/or accuracy. Not all completed sections will necessarily be graded every time, one section might be chosen, or all might be chosen for grading.
- Professionalism matters If I can't read it, if it looks like you did it last minute walking to class, if it looks like you put no thought, effort, care, detail into your work, that will be reflected in your score.
- You must use adequate spacing between sections to keep your work clear and understandable. Do NOT try to save space. You have plenty of pages in your lab notebook. Clearly communicating your work matters more than saving a few pages in your lab notebook.

PURPOSE OF THE EXPERIMENT

- a. State the general principle being studied
- b. State any specific results to be obtained

REAGENTS TABLE

Nama	Formula	Molecular	Phy	ysicals Proper	ties	State @ Boom Tomp	Safaty Concorne				
	Formula	(g/mol)	B.P. (°C)	M.P (°C)	Density (g/cm ³)	(°C)	Safety Concerns				
				DIE							
			SAM								

- a. Provide the above info for the state (s, l, g, aq) that is being used in the lab.
- b. Note safety/cleanup points (if provided, all should be BE DESCRIPTIVE)
- c. Googling MSDS is how to do this! We don't really use physical MSDS books anymore.

MATERIALS

a. List all needed chemicals, materials, and equipment in a bullet list.

PROCEDURE

- a. Rewrite the procedure in your own words and in FLOW CHART STYLE!
- b. Do not copy directly from lab handout!
- c. Full sentences not needed.
- d. Do not combine steps. Keep the original numbering system in the lab handout. This is important in case we need to make changes before the lab, or if you need help you can tell me what step you are on.
- e. Included drawings of lab setups when applicable. Label the drawings with equipment names.
- f. Add reminders, equations, notes to yourself etc.
- g. The intention of this section is to get you to *think about* the steps by putting it in your own shortened version.
- h. You should be able to do the lab with nothing but your notebook!

PRE-LAB QUESTIONS

- a. Complete any listed pre-lab questions.
- b. Number all questions.
- C. Must show all work for calculations.
- d. Do not recopy the question. Paraphrase it into your answers so a reader can infer what the question was.
- e. Full sentence answers are not needed, but complete and detailed answers and thoughts are required!
- f. Box any final numerical or short phrase like answers.

DATA SECTION

- a. Must be done on a <u>NEW</u> sheet of paper in your lab notebook! It cannot be on the same page as the rest of your pre-lab because you will be tearing out the carbon copy pages of your pre-lab and turning that in before you start the lab.
- b. Set up your data table(s) BEFORE the lab starts. This is part of your pre-lab assignment even though it is not turned in with the rest of the sections. It may be checked even though it is not turned in until after the lab.
- c. Must include sections for QUANTATATIVE and QUALITATIVE data.
- d. Make it large does not have to be an entire page, but needs to be sufficiently large. You will be docked points for any work that is "squished," as that is not professional work and hinders the reader's ability to learn from it.
- e. You must give your data table(s) a descriptive title. It should specifically mention any reaction(s) that is/are occurring as part of the title.
 - a. Bad titles Data Table, Table for My Lab, Table of Lab Numbers, Lab Data, etc.
 - b. Better titles Effect of Concentration on Absorbance, pH of Common Household Substances, etc.
- f. You must have units in the headers of the columns/rows.
- g. Your data collection should reflect the significant figures that are appropriate for each piece of equipment you are using. Remember that our equipment is inherently limited in precision!
- h. Your qualitative observations must be descriptive and detailed. It is not sufficient to say "it changed colors," or "it reacted." Qualitative data is as important as quantitative data!

CALCULATIONS SECTION

- a. Must show ANY calculation or manipulation of numbers done during and/or after the lab. If it is not a direct measurement, there should be evidence of it in the calculation section.
- b. Sometimes results of calculations are put into your data tables. You still need to show the calc's here!
- c. Even "simple" calculations need to be shown. This includes subtracting, adding, metric conversions, etc.
- d. Number and label all calculations. Make sure to give short label so people know what the calculation is.
- e. Make sure you include units everywhere!

POST LAB

- a. Post Lab Questions in lab notebook.
 - a. Number all questions.
 - b. Do not recopy the question. Paraphrase in your answers so a reader can infer what the question was.
 - c. Complete sentences not needed unless asked for. Complete thoughts and answers ARE needed!
- b. Post Lab Two Pager worksheet given to you.
 - a. Summarizes what you learned.
 - b. Imagine you are making a "cheat sheet" for a lab quiz! You may or may not be allowed to use these Two Pagers on Post Lab Quizzes. It will be announced at the start of the quiz if you can use it or not.
- c. Formal Lab Report Sections
 - a. Not always given. You will be told if/when to do one or more of these formal sections.
 - b. Expectations will be given to you at the time. General expectations are on the Lab Guidelines Check List.
- d. Post Lab Quiz
 - a. Pop quizzes that can happen any time after a quiz.
 - b. Will assess whether you actually *learned* from the lab. It is imperative that you do not just copy lab work from classmates. Lab questions may appear on pop quizzes, chapter quizzes, tests, finals etc.

The lab assignments and expectations can change at teacher's discretion

Dougherty Valley HS Chemistry Post Lab Two Pager

Worksheet #____

Name:

Period:

Seat#:

Lab Title		Торіс
Purpose/Question/Problem/Goal/Hypothesis	5	
Key Vocab Terms	Key Equati	ions
Key Concept Explained		
Important or Unique Lab Equipment, Set Up	, or Named Lab Te	echniques Sig Figs Related to
		Lab Equipment
Your Experimental Results		
Accepted Value/Results	Percent Erro	or Calculation

Sample Calculations for Each Type of Calculation Done Sossible Lab Errors Mathematical Impact of Lab Errors on Results	
Possible Lab Errors	Mathematical Impact of Lab Errors on Results
Example Test Question on this Topic	Solved Example Test Question on this Topic

Things to Turn In

- **Prelab** Done in lab notebook, carbon papers turned in *before* the lab. •
 - Post Lab Turned in after the lab. Due dates will be told to you in class.
 - 0
 - Page 1 Post Lab Two Pager Done on this template. Page 2 Data Tables Done in lab notebook, carbon papers turned in. 0
 - Page 3 Calculation Section Done in lab notebook, carbon papers turned in. 0
 - Page 4 Post Lab Questions Questions on lab sheet, answers done in lab notebook, carbon papers turned in. 0
 - Page 5 Formal Post Lab Section If asked for. Will be given specific instructions at the time.
- Post Lab Quiz Will be done and turned in during class.

Make-up Lab Sheet for Missed Lab Assignment

You can print copies of this on the "Labs" tab of the class website. You have one day longer than you were gone to complete this assignment. Gone one day, then you get two days to complete. Gone two days, then you get three days. If you were present for the lab but did not participate then it is due the next day.

Name: Period: Seat #:

Write the name of the missed lab here: _

Write the date that the lab was originally performed here:

Instructions:

Interview at least three (3) students who were present for the lab activity and have them orally answer the questions listed below. <u>Take notes while discussing the lab and staple them to this paper</u>. Please have your interviewees provide their names ad signatures in the table below.

Name (Printed)	Period/Teacher	Signature

Now, YOU answer the following questions on this sheet:

- 1. What was the main idea that this lab activity was trying to demonstrate?
- 2. How did the lab activity demonstrate this idea (i.e., what did people do to find out the main idea?)
- 3. How does the information from questions 1 and 2 relate to what we are currently studying?

4. Identify at least one applicable (or use) for the information presented in the lab; that is, how could the information relate to you own personal use, an industrial use, or a societal application?

5. Write two test questions that would be fair to ask about this lab on a unit test or a quiz.

Generic Chemistry Lab Report Guidelines – Specifics give	en in class supersede these generic guidelines!								
Please Note: Labs grades are based on quality not just com	pletion! Articulating ideas clearly is key to science!								
REQUIREMENTS									
Format	Formatting 1 2 3 4								
□ 10pt Times New Roman or Arial font ONLY	10pt correct font								
\square 1.5 spaced	0.5-in margins 🗌 Yes 🗌 No								
□ Bold section headings for everything	1.5-in spacing 🛛 Yes 🗌 No								
\square 8.5"x11" white paper	Stapled In Order								
\Box 0.5" margins on all sides	3 rd Person 🗌 Yes 🗌 No								
\Box Abstract has 2" margins on each side and is single-spaced.	Past Tense 🛛 Yes 🗌 No								
\Box Stapled in following order:	Section Headings 🗌 Yes 🗌 No								
o Title page o Lab report	Abstract Format								
o Carbon Copy pages used during lab (Must have	Justified both sides Yes No								
HEADER filled out on every page) o Carbon Copy pages used for lab report and post lab Q's	2-in margins 🛛 Yes 🗌 No								
	Single Spaced Ves No								
• THIRD PERSON, PAST TENSE, PASSIVE VOICE!!!! • We know you wrote it vour name is on the									
frontuse third person									
o You already finished the lab before you did your									
report! Use past tense!									
but it is appropriate for lab reports!									
• Active voice: The hot plate stirred the									
reaction for three minutes.									
• Passive voice: The reaction was stirred by the hot plate for three minutes									
Title Page									
It gets its own page									
	Own page 🛛 Yes 🗌 No								
	Title 🗌 Yes 🗌 No								
☐ Abstract (see below)	Abstract present 🗌 Yes 🗌 No								
Group members and how they contributed	Group members 🗌 Yes 🗌 No								
Date of lab experiment	Date 🗌 Yes 🗌 No								
Class and period	Class and period \Box Yes \Box No								
Abstract	Abstract 1 2 3 4 2								
On Title Page (2-in margins)	Purpose Percent error*								
☐ Justified on both sides, do not center on page!	Yes No								
☐ The following is to be articulated concisely in no more									
than 3-5 sentence sin the order below									
• Sentence 1. what was the purpose of the experiment? The question or statement. Do not copy	□ Yes □ No <u>Conclusions made</u>								
from lab handout.	How results were found								
 Sentence 2: What you found out (the results – the silver alloy beads were found to contain X% of silver) 	□ Yes □ No								
• Sentence 3: How the results were determined (Brief!	Named techniques* Short, concise and clear								
Specific names of lab techniques if applicable)	□ Yes □ No □ Yes								
• Sentence 4: Report accepted value (if applicable)	□ No								
 Sentence 5: Conclusions made (if applicable), what 	Accepted value*								
you drew from the experiment	└┘ Yes └┘ No *if applicable								

Background – part of prelab if required	Background 1 2	3 4								
Do NOT copy info from lab worksheet!	In Own Words									
Summary/explanation of the important chemistry topics covered in lab										
\Box Explain how the topics relate directly to the lab	🗌 No	Some								
What will your lab be discovering/testing related to the	Chem Topics Explained	□ None								
		Chem Rxns*								
what is your experimental question/variables	Some	All balanced w/ states								
☐ Include relevant chemistry vocabulary	None or incorrect	Some or not bal/states								
☐ Include relevant chemical equations	Connection to Lab	None or wrong								
\Box Include balancing and states for chemical equations		Hypothesis*								
\square Number each equation to make referencing easier	Some	Yes and correct format								
 Hypothesis if applicable If, then, BECAUSE 	 None or incorrect 	Yes but lacking								
Everyone forgets the BECAUSE portion!Relate it back to the topics covered	Exp. Q/Variables	□ Not included								
\Box Be sure to site any references used including textbook,	All identified	References*								
website, lab manual, etc. Below is a good explanation of ACS formatting	□ Some identified	Yes and ACS format								
 https://libguides.williams.edu/citing/acs 	□ None	Yes but lacking								
	*if applicable	□ Not included								
Observations/Data	Data Table 1 2 3	3 🗌 4 🗌								
☐ Qualitative and quantitative! Must have both!	Observations	Professionalism								
Lab notebook paper only, with data tables and graphs made/collected DURING the lab	Significant, detailed,	Total pro, ruler Used readable etc.								
Professional appearance		Good								
 Clear, large, not squished! Black or blue ink ONLY 										
Descriptive titles										
\Box Sig figs for measurements and calculations	Strong descriptive clear									
\Box Label graphs/tables with name of measurement and units		aarintiya								
Calculations	Calculations 1 2	3 🗌 4 🗌								
☐ Work shown completely	Work Shown	<u>Units</u>								
☐ Flow of work is clear	Significant, detailed,									
\Box Work set up correctly to solve actual problem	thorough	Some								
Correct numbers used in work	Sufficient	None or wrong								
□ Units provided everywhere	Lacking									
□ Correct answer	Organization of Work									
	☐ Hazy									
	Correctly Set Up									
	│									

Γ	I	
Data Analysis	Data Analysis 1 2	3 🗌 4 🗌
☐ Include table and graph of anything you calculated,	Data/Granhs	% Error
and graphs are labeled correctly	All included	
Explain data that you collected		
Include a few sentences explaining what the graphs/tables	□ Not included	
Mention any errors and how they affect your data analysis	l ahels	Sample Calculations
Remember "human error" is not an acceptable phrase.		
☐ Include percent errors if applicable		
☐ Include one sample calculation for each type of calculation performed	□ None or wrong	□ None or wrong
☐ Include equations, reactions, units, work, etc.	Explain Data/Graphs	<u>Eq's, Rxns, Units, etc</u>
Define symbols/variables used		
\Box You may be graded on the accuracy of your lab data and/or	□ Some	□ Some
whether your calculations are correct or not	□ None	None or wrong
	Errors	Accuracy
	□ Not significant ones	□ Ok
	☐ Did not explain impact	☐ Poor
	☐ Not included	
	Discussion Questions 1	
☐ Answers to provided lab questions, statements, or calculations with work shown and units when appropriate.	Questions	Calculations w/ Work
Each O is numbered and answered in complete sentences.	All included	
\square Restate the question in your answer, do not just copy the O!	Missing some	□ Some
Will sometimes be done as part of a formal report as a group, or	□ Not included	□ None
done individually on the carbon copy paper in your notebook.		Correct Answer
• If done on carbon copy paper but a formal lab report is also tuped up then you must include this section	Complete Sentences	
heading in the report but simply say "refer to carbon		☐ Most
copy pages at the end of the report."		Ew Few
Will sometimes be graded for completion, and sometimes	□ None	□ None
will be graded for accuracy.	Questions Restated	
		e
Conclusion	Conclusion 1 2	3 4
\Box Complete sentences, paragraph form	Complete Sentences	Relate to Chem Topics
□ Report your final results		Yes No
\Box Include accepted value and % error if applicable		
Explain why it turned out the way it did – sources of error, limits in lab design, etc.	Results Reported	Further Experiments
\Box Relate findings back to basic principles of chemistry	Accepted Value / % Error	Relates to Real Life
\Box What further experiments might you do to keep studying this?		
☐ How does it relate to real life if applicable?		
\Box How could you make improvements to the lab?	Errors Yes No	Improvements
	Level of Detail	t 🗌 Sufficient 🗌 Lacking

General Feedback about Pre-Labs

- Read ALL of R-5...not just the first page!
 - There are entire check lists and examples of how things are graded! Look at them!
- Fill out headers and footers
- Stop squishing things
- Include ALL asked for parts
 - Don't include things that weren't asked for
- DON'T COPY!
 - o That means don't copy background info, procedures, etc
- Shorten procedures
 - Get right to the point! Just enough to jog your memory! Stop writing so much!
 - A Flow Chart is meant to be partially visual! Not just drawing boxes around a bunch of writing!
- Reagent tables need to be filled out!
 - Writing "don't eat it" in every safety concern box is not going to get you points...obviously don't eat ANYTHING in the lab. List things like flammability, skin irritant, etc. Actually look it up!
- Don't leave pre-labs until the very last minute...

Satisfied with your pre-lab score?

- Do not get complacent!
 - \circ $\,$ We need to show growth, improvement, and refinement as the year goes on.
 - Expectations do not remain stagnant they grow as our skills should be growing as the year goes on!

Not satisfied with your pre-lab score?

- Rewrite the ENTIRE thing on binder paper
 - \circ $\;$ Not just the parts you lost points on
- Use homework pass to resubmit it
 - o Don't forget to fill out Gold Form to attach to homework pass and redone pre-lab
 - You must staple the original to the back of your new one
 - Original may NOT leave the classroom you may come in during brunch/lunch/access to look at it and to get it out of your folder to staple to the back of your new one before turning in.

Need help?

- Ask BEFORE the day it is due!
- Come see me during brunch/lunch/access or email me!
- Don't email me at a crazy hour of the night the day before it is due...that is not being responsible...

Add this to your R-5 lab info Reference Sheets!

		R-6
Solubility	, of Some Ionic Compounds in Wat	ter
Always Soluble	2	
Alkali metals =	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	
Ammonium =	NH ₄ +	AAA
Acetate =	$C_2H_3O_2^{-}$	CNP
Chlorate =		
Nitrate =	NO_3^-	
Perchlorate =		
Generally Solu	ble	
Cl⁻, Br⁻⁻, l⁻	Soluble <u>except</u> : Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺	AP-H
F⁻	Soluble <u>except</u> : Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺ , Mg ²⁺	CBS-PM
Sulfate = SO ₄ ²⁻	Soluble <u>except</u> : Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Pb ²⁺	CBS-P
Generally Inso	luble	
O²−, OH−	Insoluble <u>except</u> : Alkali metals and NH ₄ +	AA
	<u>Somewhat</u> soluble: Ca ²⁺ , Ba ²⁺ , Sr ²⁺	CBS
CO ₂ ²⁻ , CO ₃ ²⁻		
S ²⁻ , SO ₃ ²⁻	Insoluble except. Alkali metals and NH4 ⁺	ΔΔ
PO ₄ ³⁻		
CrO ₄ ^{2–} , Cr ₂ O ₄ ^{2–}		
Not Solubla - forma progin	sitata Salubla – diasalvas in wata	

Activity Series Chart

Metals

Non-Metals

Most	<u>Nam</u>	<u>ie</u>	<u>Symbol</u>	<u>Name</u>	<u>Symbol</u>
Active	1:+6		. :	Elucrino	F
1	Dota	ium		Chlorino	F Cl
	Pola Pori	1551U111	R D	Bromino	Ci Br
	Stro	um ntium	Da Sr	Indine	Bi T
	Calc	ium	51 Ca	Ioume	1
	Sodi	ium	Ca Na		
	Maa	nesium	Na Ma		
	magnesium Aluminum		ΔΙ		
	Man	nanese	Ai Mn		
	Zinc	ganese	Zn		
	Iron	,	En. Fe		
	Cadr	nium	Cd		
	Cadmium Cobalt		Co		
	Nick	el	Ni		
	Tin	-	Sn		
	Lead		Pb		
	Hydı	rogen	Н		
	Сор	per	Cu		
	Silve	er	Ag		
	Merc	cury	Hg		
. 🗶	Gold	1	Au		
Least Active					
Active					

		Elements (The reacti	CANNOT replace on DOES NOT	ce anything ABOVE t OCCUR in this situa	hem. tion.
			•	***	
	Examples:	ZnCl₂ + Mg -) Magnesium i	MgCl₂ s above Zinc so tl	he reaction happens	
		ZnCl₂ + Cu → Copper is bel	No Reaction ow Zinc so no rea	action happens	

Useful and Necessary Formulas http://www2.ucdsb.on.ca/tiss/stretton/Database/formulas_content.html

<u>,,,,,,,,,,</u>	
: P_7	Ē
11-1	-

1.	Ele	ctromagnetic Radiation	
	a)	Speed of Light	$c = \lambda * v$
	b)	Wavelength	$\lambda = c / v$
	c)	Frequency	$v = c / \lambda$
	d)	Energy in a photon	$E = h^* v$
2.	Cor	ncentration and Molar Mass	
	a)	Density (D)	D = m / V
	b)	Moles (n)	n = g / mm
	C)	Moles (# of particles)	n = number of particles / Avogadro's number
	d)	Moles (solution)	n = concentration • volume
	e)	Moles (gas equation)	n = PV / RT
	f)	Molarity (M)	M = n / volume
	g)	Molar mass (mm)	mm = m / n
3.	Gas	ses	
	a)	Boyle's Law	$\mathbf{P}_1 \bullet \mathbf{V}_1 = \mathbf{P}_2 \bullet \mathbf{V}_2$
	b)	Charles' Law	$V_1 \bullet T_2 = V_2 \bullet T_1$
	c)	Combined Gas Law	$P_1 \cdot V_1 / T_1 = P_2 \cdot V_2 / T_2$
	d)	Ideal Gas Law	PV = nRT
	e)	Dalton's Law of Partial Pressures	$P_T = P_1 + P_2 + P_3 + \dots + P_n$
4.	Aci	ds and Bases	
	a)	рН	pH = -log[H ⁺¹]
	b)	рОН	pOH = -log[OH ⁻¹]
	c)	[H₃O ⁺¹]	$[H_3O^{+1}] = 10^{-pH}$
	d)	[OH ⁻¹]	$[OH^{-1}] = 10^{-pOH}$
5.	Неа	at	
	a)	Quantity of Heat (Q)	$\mathbf{Q} = \mathbf{m} \cdot \mathbf{c} \cdot \Delta \mathbf{t}$
	b)	Quantity of Heat (fusion)	$Q = m \cdot L_{f}$
	c)	Quantity of Heat (vaporization)	$Q = m \cdot L_v$
	d)	Celsius to Kelvin	K = °C + 273.15
	e)	Kelvin to Celcius	°C = K - 273.15
6.	Mat	hematics	
	a)	Quadratic Equation	x = -b <u>+</u> (b ² - 4ac) ⁻² / 2a
		-	<u> </u>

Common Physical and Chemical Constants

http://www2.ucdsb.on.ca/tiss/stretton/Database/constants.htm

Avogadro's Number Planck's Constant 1 atmosphere (atm)

1 mole of any gas at STP 1 mole of any gas at SATP Ideal Gas Law Constant (R)

1 calorie (cal) 1 Cal 1 atomic mass unit (amu) 1 tonne(t) Speed of light in a vacuum Rest mass of an electron (m_e) Rest mass of a proton (m_p) Rest mass of a neutron (m_n) 1 kiloWattHour(kWh) 1 Joule (J) 1 Coulomb(C) Electronic charge on an electron 1 Ampere(A) 1 Volt(V) 1 electron volt (eV) **Faraday's Constant**

6.02217 X 10²³ things/mole 6.6260755 X 10⁻³⁴ Js 101,325 Pascals (Pa) = 101.325 kPa = 760 mm of Hg = 760 Torr = 1.01325 bar 22.4 L (0°C, 1 atm) 24.8 L (25°C, 1 atm) 0.0821 L atm mol⁻¹ K⁻¹ = 8.31430 L kPa mol⁻¹ K⁻¹ $= 8.31441 \text{ J mol}^{-1} \text{ K}^{-1}$ 4.184 J 1 kcal = 1000 calories 1.6605665 X 10⁻²⁴ a 1000 kg = 1 Mg 299792458 m s⁻¹ (3.0 X 10⁸ m s⁻¹) $0.000548712 \text{ u} = 9.1093897 \text{ X} 10^{-28} \text{ g}$ $1.00727605 \text{ u} = 1.67262305 \text{ X} 10^{-24} \text{ g}$ $1.008665 \text{ u} = 1.674954 \text{ X} 10^{-24} \text{ g}$ 3.6 MJ $1 \text{ kg m}^2 \text{ s}^{-2} = 1.0 \text{ X} 10^7 \text{ erg}$ 6.24 x 10¹⁸ e⁻ 1.60217733 X 10⁻¹⁹ C 1 Coulomb/s 1 J/C = 96.5 kJ/mole 1.60219 x 10⁻¹⁹ J 96,486.7 C/mole e⁻

R-8

					_						-			-			-			1				1		Ξ
\sim		0	<u>2</u>	He	helium	10 M 2	INE	18	Ar	argon	36	Kr	krypton	54	Xe	xenon	86	Rn	radon		71	Lu ³⁺	lutetium	103 T ^{2⊥}	LL ^T	awrenciui
ION		4	1	-H	hydride	6	fluoride	17	C]-	chloride	35	-Br-	e bromide	53	<u> </u>	e iodide	+ 85	D At	+ astatide		1 1 3⊤	rbium(III)	Yb ³⁺ erbium(II)	¹² No ²⁺	belium(II)	N0 ³⁺ II
OF					16	8	oxide	16	S ²⁻	sulfiide	34	Se ²⁻	selenide	52	Te ²⁻	telluride	84 0.2.	polonium(I	PO ⁴⁻		20	n ³⁺ ytte	tte	d ²⁺ ¹⁰	ium (II) noi	d ³⁺
ABLE	r ion	charge ion	(IUPAC)		15	N 13-	nitride		p3-	osphide	~	AS ³⁻	rsenide	Ch3+	timony(III)	Sb^{5+} timonv(V)	3 Ri 3+	smuth(III)	Bi ⁵⁺ smuth(V)		69	Tn	thuli	101M	mendelev	□ M ■ mendelevi
IC T/	KEY	Fe ^{3+'}	►Fe ²⁺	ron (II)	4	7	ے hon	15	:=	on ph	ŝ	-94+	anium a	n4+ 51	(IV) and	$\frac{n^{2+}}{m}$	12+ 83	d (II) bis	1 (IV) bis		68	Er^{3+}	erbium	100	Fm	fermium
[OD]	ic ,		pol	Ţ	÷	9	carl	14	+	m silic	32	ک +	n germa	50 C	⁺ آٿر	<u> </u>	82 D	(\mathbf{I}) lead	TII) lead			Ho^{3+}	lmium	, 7 1	ES	teinium
PER	atom	numb	sym		13	2 C	boron	13	Al^{3+}	aluminu	31	Ga ^{3.}	galliun	49	\ln^{3+}	indium	81 Tut+	thallium	TI ³⁻ thallium()		67	3+	sium hol	66		nium eins
								_		12		Zn^{2+}	zinc		Cd^{2+}	ndmium	п <i>n</i> 2+	rcury (II)	Hg ⁺ rcury (1)		99	Dv	dyspros	بن ر 108		+ californ
$C_2O_4^{2-}$	Cl04 ⁻ I04 ⁻	Mn04 ⁻ 02 ²⁻	PO_4^{3-}	F207	S03 ²	SCN ⁻	S2O3 ²	NH4 ⁺	$H_{3}O^{+}$	~	112+ 30	er (]))u ⁺	48	tar	ver ca	1,3+ 80	u (III) mei	u ⁺ 1(1) me		65	Tb^{3+}	terbium	³⁷ Bk ³⁴	berkelium(IL	-BK ⁴⁻ erkelium(IV
	e e	anate	te	spnate		ate	te OLYATOM	m	m	.	+ 29 C) copp	$\frac{1}{1}$	+ 47	J A	V) silv	+ 79 A	V) gold	H gold	-		³ d ³⁺	olinium	3		nium d
xalate	erchlor; eriodat(ermang eroxide	hospha	yropno: ılfate	ulfite	niocyan	DIOSUITA DISTUVE P	mmonit	ydroniu	10	28 Ni2	nickel (I	Ni ³ nickel (IL	46 p.d2	paladium(Pd ⁴ valadium(I	78 D+4	platinum(1	Pt^{2}		3, 64		$\left \frac{\overline{2}^{-1}}{n}\right _{gade}$	1 ³⁺ 96		n(IV) ct
VIS 0.		<u>م</u> م	ַם ו	е 	n IS	- tł	- 4- 	aı	ĥ.	6	C_{0}^{2+}	balt (II)	CO ³⁺	` `	$\mathbb{R}h^{3+}$	hodium		Ir^{4+}	dium [63 -	europiun	+ Eu europiun	95 An	americiu	- An americiur
AIC ION	H2PO HCO3	HC2C HSO	-SH	-HO	ClO-	$10^{3^{-1}}$	NO,-	NO2 ⁻	SiO4		₂ 3+ 27		$\frac{3}{10}$ $\frac{2+}{cob}$			$\left \frac{4+}{m(IV)} \right rh$	11	34+	iri		2 2	Sm ³ marium(Ⅲ)	Sm^{2+}	⁴ Pu ⁴⁺	utonium(IV)	Pu ⁰⁺ utonium(VI)
LYATON	losphate bonate	llate ate	fide	alle		-	hosphate			œ	+ 26 F	l) iron (() iron	44 p.	rutheniu	n rutheniu	76	Ŏ +	osmiu		Ö	m ³⁺ sa	ethium sa	6 - - -		unium _{bl}
OF PO	ogen ph gen carl	gen oxa gen sulf	gen sulf	gen sun ride	hlorite		drogen p)	silicate	7	25 Mn ²	anganese(i	${ m Mn}^4$	13	Tc^{7+}	echnetiur	'5	Re ⁷⁻	rhenium		61	3+ p.	um prom	3+ <mark>93</mark>		H nepti (IV)
TABLE	dihydr hydrog	hydrog hydrog	hydro	hvdrox	hypocl	iodate	monony	nitrite	orthos	9	Cr3+ 2	nium (III) m	$\frac{Cr^{2+}}{m}$	4	Λ^{06+}	bdenum to	2	W6+	gsten		60	νd	neodymi	92 U ⁶	uranium	uranium (
	(-00									3+ 24	n(III) chron	$\left \frac{5+}{n} \right $	5+ 42	N N	$\mathbf{v}^{3+ \text{moly} }$	74	5+	um tun			Pr^{3+}	seodymium	Pa ⁵⁺	tactinium(V)	Pa ⁴⁺ actinium(IV)
CH ₃ C(AsO_{3}^{3} AsO_{3}^{3}	C6H5C BO3 ⁻	BrO ₃ -		CI-C	ClO ₂ ⁻		CN-	$Cr_2O_7^2$	5	23 V.	vanadiun	vanadiun	41 Nb	niobium	Nb niobium	73	Ta	tantalı		59	e3+	um pra	<u>1</u> +		ium prot
te	ate ite	e j	ate	nate ate (de	ite	nate te	de	omate	4	2 T;4+	anium (IV)	Ti ³⁺ anium (III)	0	Zr^{4+}	irconium	2	Hf^{4+}	hafnium		58	Ŭ	ceri	06	-	tho
acetai	arsen arsen	benzc	brom	carbo chlors	chlori	chlori	chron	cyani	dichre	~	2	C ³⁺ tit	ndium tit:	4(r3+	ium	2	3 ³⁺	anum	,3+	, iiiiii					
						+			+	m	21	S +	m scan	39	- -	um yttri	57	ř +	m lanth	89	n Joctin					
					3 1 1	4 D_2	1 bervlliu	12	+ Mg ²	1 magnesi	20	Ca^2	m calciu	38	- Sr ²⁻	n stronti	56	Ba^2	n bariu	88 D_2	n radium					
		Ţ	-	H ⁺	hydroge	3 T:+	L.I.	11	Na	sodiun	19	\mathbf{K}^+	potassiu	37	$\mathbb{R}\mathrm{b}^{+}$	rubidiur	55	CS^+	cesium	87 Tr+	T.T francin	mandu				

	Common Labora	ntory Equipmen	t	R-9
Safety Splash Goggles	Beaker	Erlenmeyer Flask	Graduated	Cylinder
				>
Distilled Water Wash Bottle	Beaker Tongs	Crucible Tongs	Test Tube	Tongs
			0	
Hot Plate	Spatulas and Scoopulas	Disposable Pipette	Rubber Po	liceman
				1
Forceps	Ring Stand	Iron Support Ring	Utility C	lamp
Wire Gauze with Clay Center	Bunsen Burner	Flint Striker	Clay Tria	angle

Reference Sheets for Unit #1 – Chemistry Basics and Atomic Structure

Dougherty Valley HS Chemistry Chemistry Reference – Do Not Misplace!

Scientific Notation

Used to express a very large or very small number.

Move the decimal place to the right or to the left to produce a number between 1 and 10.

If you move the decimal to the right, your exponent will be negative.

If you move the decimal to the left, your exponent will be positive.

Adding and Subtracting numbers that are expressed in scientific notation require you to change the numbers so that they have the same exponents, you can do this by moving the decimal around a bit. You can also just use your calculator to add or subtract these numbers.

Multiplying numbers in scientific notation requires you to multiply the first factors then add the exponents.

Dividing numbers in scientific notation requires you to divide the first factors then subtract the exponents.

Dimensional Analysis

Dimensional analysis is a problem solving method that uses conversion factors.

A conversion factor is a ratio of equivalent values. For example; 1000m/1km

In solving dimensional analysis problems you always set the value you want over the value you already have. (What you want over what you got!)

You will cancel units and multiply to achieve your final value.

Accuracy and Precision

Accuracy refers to how close a measured value is to an accepted value.

Precision refers to how close a series of measurements are to one another.

Percent error is the ratio of an error to an accepted value.

Percent error = error/accepted value x 100 and should be expressed as a percentage.

It is irrelevant if the experimental value is larger or smaller than the accepted value.

Significant Figures

Significant figures include all known digits plus one estimated digit.

Non-zero numbers are always significant.

Zeros between non-zero numbers are always significant.

All final zeros to the right of the decimal place are significant.

Zeros that act, as placeholders are not significant.

Counting numbers and defined constants have an infinite number of significant figures.

Rounding Numbers

If the remainder beyond the last digit to be reported is less than 5, drop the last digit.

Rounding to one decimal place, the number 5.3467 becomes 5.3.

If the remainder is greater than 5, increase the final digit by 1. The number 5.798 becomes 5.8 if rounding to 1 digit.

To prevent rounding bias, if the remainder is exactly 5, then round the last digit to the closest even number. Thus the number 3.55 (rounded to 1 digit) would be 3.6 (rounding up) and the number 6.450 would round to 6.4 (rounding down) *if rounding to 1 decimal*.

Significant Figures in Measurement and Calculations

A successful chemistry student habitually labels all numbers, because the unit is important. Also of great importance is the number itself. Any number used in a calculation should contain only figures that are considered reliable; otherwise, time and effort are wasted. Figures that are considered reliable are called significant figures. Chemical calculations involve numbers representing actual measurements. In a measurement, significant figures in a number consist of:

Figures (digits) definitely known + One estimated figure (digit)

In class you will hear this expressed as "all of the digits known for certain plus one that is a guess."

Recording Measurements

When one reads an instrument (ruler, thermometer, graduate, buret, barometer, balance), he expresses the reading as one which is reasonably reliable. For example, in the accompanying illustration, note the

reading marked A. This reading is definitely beyond the 7 cm mark and also beyond the 0.8 cm mark. We read the 7.8 with certainty. We further estimate that the reading is five-tenths the distance from the 7.8 mark to the 7.9 mark. So, we estimate the length as 0.05 cm more than 7.8 cm. All of these have meaning

and are therefore significant. We express the reading as 7.85 cm, accurate to three significant figures. All of these figures, 7.85, can be used in calculations. In reading B we see that 9.2 cm is definitely known. We can include one estimated digit in our reading, and we estimate the next digit to be zero. Our reading is reported as 9.20 cm. It is accurate to three significant figures.

Rules for Zeros

If a zero represents a measured quantity, it is a significant figure. If it merely locates the decimal point, it is not a significant figure.

Zero Within a Number. In reading the measurement 9.04 cm, the zero represents a measured quantity, just as 9 and 4, and is, therefore, a significant number. A zero between any of the other digits in a number is a significant figure.

Zero at the Front of a Number. In reading the measurement 0.46 cm, the zero does not represent a measured quantity, but merely locates the decimal point. It is not a significant figure. Also, in the measurement 0.07 kg, the zeros are used merely to locate the decimal point and are, therefore, not significant. Zeros at the first (left) of a number are not significant figures.

Zero at the End of a Number. In reading the measurement 11.30 cm, the zero is an estimate and represents a measured quantity. It is therefore significant. Another way to look at this: The zero is not needed as a placeholder, and yet it was included by the person recording the measurement. It must have been recorded as a part of the measurement, making it significant. Zeros to the right of the decimal point, and at the end of the number, are significant figures.

Zeros at the End of a Whole Number. Zeros at the end of a whole number may or may not be significant. If a distance is reported as 1600 feet, one assumes two sig figs. Reporting measurements in scientific notation removes all doubt, since all numbers written in scientific notation are considered

sigr	nificant.	1 600 feet	1.6 x10 ³ feet	Two significant	figures
		1 600 feet	1.60 x 10 ³ feet	Three significan	it figures
		1 600 feet	1.600 x 10 ³ feet	Four significant	figures
	Sample	Problem #1: Underlin	e the significant figu	res in the following nu	mbers.
(a)	0.0420 cm	answer = 0.0 <u>4</u>	<u>20</u> cm (e) 2 403 ft.	answer = <u>2 403</u> ft.
(b)	5.320 in.	answer = <u>5.32</u>	<u>20</u> in. (f)	80.5300 m	answer = <u>80.5300</u> m
(C)	10 lb.	answer = <u>1</u> 0 lk	o. (g) 200. g	answer = <u>200</u> g
(d)	0.020 ml	answer = 0.0 <u>2</u>	<u>0</u> ml (h)2.4 x 10 ³ kg	answer = $2.4 \times 10^3 \text{ kg}$

Rounding Off Numbers

In reporting a numerical answer, one needs to know how to "round off" a number to include the correct number of significant figures. Even in a series of operations leading to the final answer, one must "round off" numbers. The rules are well accepted rules:

- 1. If the figure to be dropped is less than 5, simply eliminate it.
- 2. If the figure to be dropped is greater than 5, eliminate it and raise the preceding figure by 1.
- 3. If the figure is 5, followed by nonzero digits, raise the preceding figure by 1
- 4. If the figure is 5, not followed by nonzero digit(s), and preceded by an odd digit, raise the preceding digit by one
- 5. If the figure is 5, not followed by nonzero digit(s), and the preceding significant digit is even, the preceding digit remains unchanged

Sample Problem #2: Round off the following to three significant figures.

(a)	3.478 m	answer = 3.48 m	(c) 5.333 g	answer = 5.33 g
(b)	4.8055 cm	answer = 4.81 cm	(d) 7.999 in.	answer = 8.00 in.

Multiplication

In multiplying two numbers, when you wish to determine the number of significant figures you should have in your answer (the product), you should inspect the numbers multiplied and find which has the least number of significant figures. This is the number of significant figures you should have in your answer (the product). Thus the answer to 0.024 x 1244 would be rounded off to contain two significant figures since the factor with the lesser number of significant figures (0.024) has only *two* such figures.

Sample Problem #3: Find the area of a rectangle 2.1 cm by 3.24 cm.

Solution: Area = $2.1 \text{ cm x} 3.24 \text{ cm} = 6.804 \text{ cm}^2$

We note that 2.1 contains two significant figures, while 3.24 contains three significant figures. Our product should contain no more than *two* significant figures. Therefore, our answer would be recorded as 6.8 cm^2

Sample Problem #4: Find the volume of a rectangular solid 10.2 cm x 8.24 cm x 1.8 cm

Solution: Volume = $10.2 \text{ cm x } 8.24 \text{ cm x } 1.8 \text{ cm} = 151.2864 \text{ cm}^3$

We observe that the factor having the least number of significant figures is 1.8 cm. It contains two significant figures. Therefore, the answer is rounded off to 150 cm^3 .

Division

In dividing two numbers, the answer (quotient) should contain the same number of significant figures as are contained in the number (divisor or dividend) with the least number of significant figures. Thus the answer to $528 \div 0.14$ would be rounded off to contain *two* significant figures. The answer to $0.340 \div 3242$ would be rounded off to contain three significant figures.

Sample Problem #5: Calculate 20.45 ÷ 2.4

Solution: 20.45 ÷ 2.4 = 8.52083

We note that the 2.4 has fewer significant figures than the 20.45. It has only *two* significant figures. Therefore, our answer should have no more than two significant figures and should be reported as 8.5.

Addition and Subtraction

In adding (or subtracting), set down the numbers, being sure to keep like decimal places under each other, and add (or subtract). Next, note which column contains the first estimated figure. This column determines the last decimal place of the answer. After the answer is obtained, it should be rounded off in this column. In other words, round to the least number of decimal places in you data.

Sample Problem #6: Add 42.56 g + 39.460 g + 4.1g

Solution:

Sum =

42.56 g
39.460 g
<u>4.1 g</u>
86.120 a

Since the number 4.1 only extends to the first decimal place, the answer must be rounded to the first decimal place, yielding the answer 86.1 g.

Average Readings

The average of a number of successive readings will have the same number of decimal places that are in their sum.

Sample Problem #7: A graduated cylinder was weighed three times and the recorded weighings were 12.523 g, 12.497 g, 12.515 g. Calculate the average weight.

Solution:

12.523	g
12.497	g
12.515	g
37.535	g

In order to find the average, the sum is divided by 3 to give an answer of 12.51167. Since each number extends to three decimal places, the final answer is rounded to three decimal places, yielding a final answer of 12.512 g. Notice that the divisor of 3 does not effect the rounding of the final answer. This is because 3 is an exact number - known to an infinite number of decimal places.

Common English and Metric Conversions Chart R-11

American	ו Linear Units	American to	Metric Units	American	Capacity
12 inches (in)	1 foot (ft)	1 inch	2.540 centimeters	8 fluid ounces (fl oz)	1 cup
3 feet	1 yard (yd)	1 foot	0.305 meters	16 fluid ounces	2 cups
36 inches	1 yard	1 yard	0.914 meters	2 cups	1 pint (pt)
63,360 inches	1 mile (mi)	1 mile	1.609 kilometers	16 fluid ounces	1 pint
5,280 feet	1 mile	1 gallon	3.78 Liters	2 pints	1 quart (qt)
1,760 yards	1 mile	1 quart	0.95 Liter	4 quarts	1 gallon
		1 pound	0.45 kilogram	8 pints	1 gallon
Weight	t and Mass	1 ounce	28.35 grams	32 fluid ounces	1 quart
1 Ton (T)	2,000 pounds	1 fluid ounce	29.57 mL	8 fluid dram	1 fluid ounce
1 pound (lb)	16 ounces (oz)	1 grain	60 milligrams (mg)	3 teaspoon (tsp)	1 tablespoon (tbsp)
1 Ton	32,000 ounces	1 teaspoon (tsp)	5 mL	6 teaspoon	1 fluid ounce
1 metric ton (t)	1000 kg	1 fluid dram	4 mL	2 tablespoon	1 fluid ounce
60 grains	1 dram	1 tablespoon (tbsp)	15 mL	1 drop (gtt)	1 minim
Converting	American Units	1 pint (pt)	500 mL (approx)	60 drop	1 fluid dram
Larger unit → sma	aller unit Multiply	1 quart (qt)	1000 mL (approx)	60 drop	1 teaspoon
smaller unit \rightarrow Lar	rger unit Divide	1 pound (lb)	453.6 g	60 minims	1 fluid dram
		Meti	ric Units		
mega (M) *	* kilo (k) hecto	r (h) deka (da) unit	(m, g, L) deci (d)	centi (c) milli (m)	* * micro (mc) (u)
	When g	oing from larger unit to sma	iller unit move decimal to	the right	
	When g	oing from smaller unit to lar	rger unit move decimal to	the left	
Ti	me	Metric to An	nerican Units	Temperatu	ire Formulas
1 day	24 hours	1 km	0.621 miles	(E 2))	
1 hour (hr)	60 minutes (min)	1 meter	1.094 yards	$C = \frac{(r - 3L)}{10}$	$F = 1.8 \cdot C + 32$
1 minute	60 seconds (sec)	1 meter	3.281 feet	1.0	
1 year (yr)	365.25 days	1 meter	39.370 inches		
1 week	7 days	1 cm	0.3937 inch	Medical Applicat	tion (Micrograms)
1 year	12 months (mon)	1 Liter	0.26 gallon	1,000,000 micrograr	ms (mcg) 1 gram
1440 minutes	1 day	1 Liter	1.06 quarts	1,000,000 micrograr	ms 1,000 mg
3600 seconds	1 hour	1 kg	2.20 lbs	1 mL = 1	$cc = 1 cm^3$
		1 gram	0.035 oz	1 gram	ו = 1 cm ³
Sto	nes	1 gram	15 grains	Nursing studen	its 1fl oz = 30 mL
1 carat (karat)	200 mg	1 milliliter (mL)	15 minims	Nursing studen	nts 1 in. = 2.5 cm

• ż

Significant Figures with Scientific Notation Addition and Subtraction

Speaking realistically, the problems discussed below can all be done on a calculator. However, you need to know how to enter values into the calculator, read your calculator screen, and round off to the proper number of significant figures. Your calculator will not do these things for you.

All exponents <u>MUST BE THE SAME</u> before you can add and subtract numbers in scientific notation. The actual addition or subtraction will take place with the numerical portion, <u>NOT</u> the exponent.

The student might wish to re-read the above two sentences with emphasis on the emphasized portions.

It might be advisable to point out again - <u>DO NOT</u>, under any circumstances, add the exponents.

Example #1: $1.00 \times 10^3 + 1.00 \times 10^2$

A good rule to follow is to express all numbers in the problem in the highest power of ten.

Convert 1.00 x 10^2 to 0.10 x 10^3 , then add:

 1.00×10^{3} + 0.10 × 10^{3} = 1.10 × 10^{3}

Example #2: The significant figure issue is sometimes obscured when numbers are in scientific notation. For example, add the following four numbers:

 $(4.56 \times 10^6) + (2.98 \times 10^5) + (3.65 \times 10^4) + (7.21 \times 10^3)$

When the four numbers are written in the highest power, we get:

The answer upon adding must be rounded to 2 significant figures to the right of the decimal point, thus giving 4.90×10^6 as the correct answer.

Generally speaking, you can simply enter the numbers into the calculator and let the calculator keep track of where the decimal portion is. However, you must then round off the answer to the correct number of significant figures.

Lastly, be warned about using the calculator. Students often push buttons without understanding the math behind what they are doing. Then, when the teacher questions their work, they say "Well, that's what the calculator said!" As if the calculator is to blame for the wrong answer. Remember, it is your brain that must be in charge and it is you that will get the points deducted for poor work, not the calculator.

Practice Problems

1)
$$(4.52 \times 10^{-5}) + (1.24 \times 10^{-2}) + (3.70 \times 10^{-4}) + (1.74 \times 10^{-3})$$

2) (2.71 x 10⁶) - (5.00 x 10⁴)

Reminder: you must have the same exponent on each number of the problem.

http://www.chemteam.info/SigFigs/SciNotMath-AddSub.html