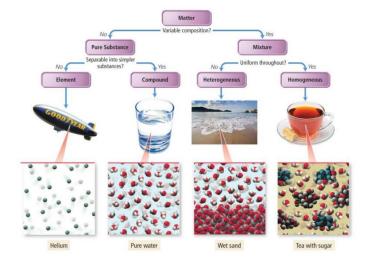
Week 3 Packet – Honors Chem


This is <u>hopefully</u> all the handouts we will use this week in Honors Chem. Due to the challenging logistics of this year, please offer grace if I miss a handout or if things change during the week. <u>Please note</u> – You do not <u>have</u> to print. I am just providing the option to make things easier for those who want to print. All of these pages are on the class website, always! <u>www.mychemistryclass.net</u>

*I will put the glue ins for the notes on the front and/or back of the packet cover page like this – since you don't need the cover page for anything you can always just cut these out and glue them in. Trying to save some paper for those of you who are printing! ©

N-3

Nonzero Integers	ALWAYS COUNT as SIGNIFICANT	
Leading Zeros	NEVER COUNT as SIGNIFICANT	
Captive Zeros	ALWAYS COUNT as SIGNIFICANT	
Trailing Zeros	AFTER A DECIMAL ALWAYS COUNT as SIGNIFICANT	
SOMETIMES COUNT as SIGNIFICANT	NO DECIMAL NEVER COUNT as SIGNIFICANT	
Exact Numbers	INFINITE NUMBER of sig figs	
Multiplication & Division	Answer based on LEAST number of SIG FIGS in the problem	
Addition & Subtraction	Answer based on LEAST number of DECIMAL PLACES in the problem	

N-4

N-5

Dalton's Atomic Theory (1808)				
#	Postulate	✓ or X		
	All most to a construction of a change of			
1	All matter composed of extremely small particles called atoms			
	•			
_	Atoms of a given element are			
2	identical in size, mass, and other			
	properties			
3	Atoms of different elements differ in			
	size, mass, and other properties			
4	Atoms cannot be subdivided,			
	created, or destroyed			
	Atoms of different elements combine			
5	in simple whole-number ratios to			
	form chemical compounds			
	In chemical reactions, atoms are			
6	combined, separated, or rearranged			

N-5

Cathode rays have identical properties regardless of element used Atoms are neutral Electrons have very little mass compared to the atom's mass

N-5

Conclusions from the Gold Foil Experiment Most of the particles passed right through A few particles were greatly deflected. Very few were GREATLY deflected