Week 5 Packet – Honors Chem

This is <u>hopefully</u> all the handouts we will use this week in Honors Chem. Due to the challenging logistics of this year, please offer grace if I miss a handout or if things change during the week. <u>**Please note**</u> – You do not <u>have</u> to print. I am just providing the option to make things easier for those who want to print. All of these pages are on the class website, always! <u>www.mychemistryclass.net</u>

*I will put the glue ins for the notes on the front and/or back of the packet cover page like this – since you don't need the cover page for anything you can always just cut these out and glue them in. Trying to save some paper for those of you who are printing! ⁽²⁾

N-11

N-10 Electron Configuration – an "address" for the electrons in an atom									
An Orbital is:		How do we describe orbitals?							
		1.							
		2.							
		3.							
		4.							
Different orbitals are in different energy le	vels	Different orbitals have	different shapes						
Different orbitals have different orientatio	<u>ns</u>	Each orbital is only allo	Each orbital is only allowed to have two es						
Where do e- live? What is the address for	one?	They can get REALLY long							
State> Energy level		1s+½,1s-½,2s+½,2s-½							
City> Type/shape of orbital									
Street> Orientation or orbital		2p _x +½ , 2p _x -½ , 2p _y +½							
House #> Spin up or spin down of e	lectron	2p _y -½ , 2p _z +½ , 2p _z -½							
Want to describe where ALL the e- in an at Shrink it down and only list:	om were?	Steps to finding all the electrons 1. Pick an							
1.		2 Find the number of							
2.									
3.		3. Start putting electrons into the							
Example:		4. Use an							
		5. List which	you used and						
			electrons in each one						
Rules fo	or putting elect	rons in an orbital diagr	am:						
1. Aufbau Principle	2. Pauli Exclu	ision Principle	3. Hunds Rule						
	<u> </u>		<u></u>						
An electron occupies the lowest energy orbital that it can. Means:	No two e ⁻ s in the same set of 4 qu Means:	same atom can have the antum numbers	Orbitals of equal energy are each occupied by one e ⁻ before any orbital is occupied by a second e ⁻ . Means:						

N-11

1s	2s	2p		Зр	4s	30	
	4p		4d		5p	6s	
	4f			5d		6p	7s
	5f			6d		7p	
 1s		2p		Зр	4s	30	ـــــــــــــــــــــــــــــــــــــ
	4p		4d		5p	6s	
	4f			5d		бр	7s
	5f			6d		7p	
 1s	2s	2p		3p	4s	30	
	4p		4d		5p	6s	
	4f			5d		6p	7s
	5f			6d			
 1s		2p	3s	3p		3	
	4p		4d		5p	6s	
	4f			5d		6p	7s
	5f			6d			

Name:

____ Worksheet #1

- 1) An orbital is:
- 2) What is the difference between an orbital and an orbit (Bohr Model)?
- 3) What are the four things we need to adequately describe where an electron is inside an atom?
 - a.
 - b.
 - c.
 - d.
- **4)** Fill in the following chart:

Orbital Type	Description of Shape	# of orbitals in a set	# electrons allowed in one of the orbitals	# electrons allowed in a set of the orbitals
S				
р				
d	Complex lobes			
f	Even more complex			

5) Describe each rule for writing the "address" of an electron - in your own words! Then draw a visual representation for this rule. If we were to try and make a little classroom poster to remind us of the rule what would it look like? Think of how things like road signs and warning signs are drawn – bold pictures with minimal words.

Rule	Written Description	Visual Representation
Aufbau Principle		
Pauli Exclusion Principle		
Hund's Rule		

Dougherty Valley HS Chemistry			
Orbital Diagrams	Worksheet #2		
Name:	Period:	Seat#:	<u> </u>

Fill in the chart below using an \uparrow and \downarrow as electrons - find the total number of electrons and use that as well as the Periodic Table to find the identity of each element.

Element	otal # e-		Orbital Filling											Electron Config.						
	F	1s	2s	2p _x	2p _y	2pz	3s	3p _x	Зру	3pz	4s	$3d_1$	3d ₂	3d₃	3d4	3d₅	4p _x	4py	4pz	
Na																				
																				1s ² 2s ² 2p ⁵
Н																				
S																				
																				1s ² 2s ² 2p ⁶ 3s ² 3p ¹
																				$1s^22s^22p^63s^23p^64s^1$
Са																				
Mg																				
																				1s ² 2s ² 2p ⁶

Element	# e-	1s	2s	2p _x	2py	2p _z	3s	3p _x	Зру	3pz	4s	$3d_1$	3d ₂	3d₃	3d4	3d₅	4p _x	4py	4pz	Electron Config.
																				$1s^22s^22p^63s^23p^2$
С																				
																				1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶
Br																				

1) Circle which of the following orbital destinations are possible.

a) 7s b) 1p c) 5d d) 2d e) 4f f) 5g g) 6i

2) Circle which of the following electron configurations is ruled out by the Pauli exclusion principle.

a) 1s²2s²2p⁷ b) 1s²2s²2p⁶3s³ c) 1s²2s²2p⁶3s²3p⁶4s²3d¹² d) 1s²2s²2p⁶3s²3p⁶

3) Explain why the following ground-state electron configurations are not possible:

Q	Config.	Reason it is wrong
a)	1s ² 2s ³ 2p ³	
b)	1s ² 2s ² 2p ³ 3s ⁶	
c)	1s ² 2s ² 2p ⁷ 3s ² 3p ⁸	
d)	1s ² 2s ² 2p ⁶ 3s ² 3p ¹ 4s ² 3d ¹⁴	

4) Draw a section of an orbital diagram that would violate each of the following rules

Aufbau Principle	Pauli Exclusion Principle	Hund's Rule