Week 6 Packet – Honors Chem

This is <u>hopefully</u> all the handouts we will use this week in Honors Chem. Due to the challenging logistics of this year, please offer grace if I miss a handout or if things change during the week. <u>**Please note**</u> – You do not <u>have</u> to print. I am just providing the option to make things easier for those who want to print. All of these pages are on the class website, always! <u>www.mychemistryclass.net</u>

*I will put the glue ins for the notes on the front and/or back of the packet cover page like this – since you don't need the cover page for anything you can always just cut these out and glue them in. Trying to save some paper for those of you who are printing! ⁽²⁾

N-13

- <u>He</u>: 1s²
- <u>Ne</u>: 1s² 2s² 2p⁶
- <u>Ar</u>: 1s²2s²2p⁶ 3s² 3p⁶
- Kr: 1s²2s²2p⁶3s²3p⁶ 4s² 3d¹⁰ 4p⁶
- <u>Xe</u>: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶ 5s² 4d¹⁰ 5p⁶

<u>A short cut method of writing configurations</u> Since noble gases are "special" – reference all configurations against the <u>PREVIOUS</u> noble gas

- 1) Find the previous noble gas
- 2) Write that noble gas in brackets []
- List any remaining electron configuration left over until you get to the element you are trying to write

N-13

<u>Ga</u>: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d¹⁰4p¹ Ga⁺: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d¹⁰

- Ga²⁺: 1s²2s²2p⁶ 3s² 3p⁶ 4s¹ 3d¹⁰
- Ga³⁺: 1s²2s²2p⁶ 3s² 3p⁶ 3d¹⁰
- Ga4+: 1s22s2p6 3s23p6 3d9

N-13

<u>Lithium</u>	Nitrogen	Sodium
1s ² 2s ¹	1s ² 2s ² 2p ³	1s ² 2s ² 2p ⁶ 3s ¹
Iron	<u>Barium</u>	<u>Krypton</u>
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶	1s²2s²2p ⁶ 3s²3p ⁶ 4s² 3d ¹⁰ 4p ⁶ 5s² 4d ¹⁰ 5p ⁶ 6s²	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶
<u>Li: 1s² 2s¹</u>	<u>Ca</u> : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	<u>Cu</u> : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁹
<u>Li*:</u>	<u>Ca²⁺:</u>	<u>Cu*</u> :
		<u>Cu²⁺:</u>

N-12

1A Hydrogen 1 H 1.01																		8A Helium 2 He 4.00
Lithium	2A Beryllium											Г	3A Boron	4A Carbon	5A Nitrogen	6A Oxygen	7A Fluorine	Neon
3 Li	4 Do												5 B	6 C	7 N	8 O	9 F	10
LI 6.94	Be 9.01												D 10.81	12.01	14.01	16.00	F 19.00	Ne 20.18
Sodium 11	Magnesium 12												Aluminum 13	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon 18
Na	Mg												A	Si	P	S	ĊI	Ar
22.99	24.31												26.98	28.09	30.97	32.07	35.45	39.95
Potassium	0.1.1	-	3B Scandium	4B	5B	6B	7B	8B	9B	10B	11B	12B	() - IV					
19	Calcium 20		21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	1ron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
K 39.10	Ca 40.08		Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	Kr 83.80
Rubidium 37	Strontium 38	-	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	50	Antimony 51	Tellurium 52	Iodine 53	Xenon 54
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
85.47	87.62		88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cesium 55	Barium 56		Lanthanum 57	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
Cs	Ba		La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	(209)	(210)	(222)
Francium 87	Radium 88	-	Actinium 89	Rutherfordium 104	Dubnium 105	Seaborgium 106	Bohrium 107	Hassium 108	Meitnerium 109	Darmstadtium 110	Roentgenium 111	Copernicium 112	Nihonium 113	Flerovium 114	Moscovium 115	Livermorium 116	Tennessine 117	Oganesson 118
Fr	Ra		Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
(223)	(226)		(277)	(267)	(268)	(271)	(272)	(270)	(276)	(281)	(280)	(285)	(286)	(289)	(289)	(293)	(294)	(294)
			Lanthanum 57	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	7
	*lanthar	nides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
			Actinium 89	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	1
	**actir	nides	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Dougherty Valley HS Chemistry Electron Configuration - Basic

Name:

_ Worksheet #3

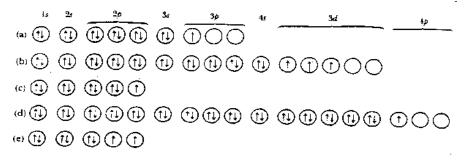
Seat#:

Period:

An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration consists of numbers, letters, and superscripts with the following format:

- 1) A number indicates the energy level (The number is called the principal quantum number, and is represented by an n typically).
 - 2) A letter indicates the type of orbital: s, p, d, f.
- 3) A superscript indicates the number of electrons in the orbital. Example 1s² means that there are two electrons in the "s" orbital in the first energy level. That element would be Helium.

To write an electron configuration:


- 1) Determine the total number of electrons to be represented.
- 2) Use the Aufbau principal to fill the orbitals with electrons. The Aufbau principal requires that the electrons fill the lowest energy orbitals first. In other words, atoms are built from the "ground up." You can use an orbital diagram to help you determine the order that the orbitals come in. You can also use a periodic table to tell you the same information based on the patterns on the table.
- 3) List the energy level, orbital type, and number of electrons used for each orbital filled with electrons. This list is the "electron configuration."
- The sum of the superscripts should equal the total number of electrons. For example: 1s²2s²2p⁶3s² is Magnesium because it has 12 electrons (2+2+6+2=12)

Configuration Writing Practice

Write a "ground state" electron configuration for each neutral atom. Ground state means that all of the lowest possible energy levels are filled – in other words, it means that the Aufbau principle is being followed. If an atom is in an "excited state" it means that the atom was given extra energy and it caused some electrons to be pushed to higher energy levels/orbitals which actually breaks the Aufbau principle. We will learn more about "excited states" later in the chapter. Ground state configurations are often just called "normal" configurations.

Q#	Total # e-	Electron Configuration
1) Na		
2) Pb		
3) Sr		
4) U		
5) N		
6) Ag		
7) Ti		
8) Ce		
9) CI		
10) Hg		

11) Write the corresponding electron configuration for each of the following pictorial representations. Name the element that each picture represents, assuming they are neutral atoms

Q	Total # e-	Name	Electron Configuration
а			
b			
с			
d			
е			

12) Indicate which groups of elements have an outer configuration indicated below. *you can just list which atomic numbers fulfill each requirement. Some chemists call these various elements the s-block, p-block, d-block and f-block

s electron configuration	
p electron configuration	
d electron configuration	
f electron configuration	

13) Determine the element of the lowest atomic number whose "ground state" contains:

Three d electrons	
A complete d set/subshell	
Ten total p electrons	
An f electron	
13 d electrons	
23 p electrons	
7 s electrons	

- 14) How many total p electrons are there in the ground state of a phosphorus atom?
- **15)** What is the maximum number of electrons that can be accommodated in an energy level of n=3? In other words, how many electrons can the third energy level hold all together?

Dougherty Valley HS Chemistry Electron Configuration – Noble Gas Configuration

Markahaat #1	
Worksheet #4	

Seat#:

Ν	а	m	ne	

1) Neon Orbital diagram										
Oloitai Giagrain										
Electron configuration			•	•	•	•	•	•		
E.C. using noble gas notation										

Period:

2) Magnesium

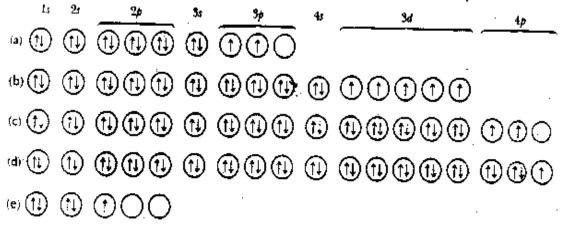
Orbital diagram									
Electron configuration									
E.C. using noble gas notation									

3) Chlorine

Orbital diagram									
Electron configuration									
E.C. using noble gas notation									

4) Potassium

Orbital diagram									
Electron configuration									
E.C. using noble gas notation									


5) Iron

Orbital diagram									
Electron configuration				1					
E.C. using noble gas notation									

6) Krypton

Orbital diagram									
Electron configuration									
E.C. using noble gas notation									

7) Write the corresponding NOBLE GASS configuration for each of the following pictorial representations. Name the element assuming that the configuration describes a neutral atom.

Q	Total # e-	Name	Noble Gas Configuration
а			
b			
с			
d			
е			

8) Which group of elements has a noble gas configuration that ends in ns²?

Dougherty Valley HS Chemistry Electron Configuration – Ions

Name:

Worksheet #5

Seat#:

Period:

An atom has the tendency to lose electrons (to another atom) or to gain electrons (from another atom) in order to make the outer shell (valence shell) complete with eight electrons. This is called a "full valence shell." Not all orbitals are full with 8, but 8 is the common number to be considered full. Atoms with a complete outer shell are considered stable. Some atoms naturally have eight electrons in their outer shell and are very stable – these are the "Noble Gases" and they are typically unreactive or "inert." He, Ne, Ar, Kr, Xe and Rn are these very stable Noble Gases. (Helium is an exception to the "8 is great" stability rule because it is stable with only two electrons in its outer shell.) **Complete the following chart:**

Element	Atomic number	Electron Configuration	Number electrons in each energy level	Number e [−] probably lost or gained	# e- left after loss or gain	Charge on ion
0	8	1s ² 2s ² 2p ⁴	2, 6	Gain 2	10	-2
Na	11	1s ² 2s ² 2p ⁶ 3s ¹	2, 8, 1	Lose 1	10	+1
S						
к						
AI						
CI						
Xe						
Са						
F						
Br						
Ν						
Ar						
I						
Sr						

Write the ground state electron configurations for the following ions.

Remember that ions have a change in their total number of electrons. Positive ions have lost electrons, and negative ions have gained electrons. Use the chart you just made on the front to help you do this faster (you figured out the ion charge on the front and the starting configuration already!)

Element	lon Symbol	Electron Configuration for the ION	Number electrons in The VALENCE SHELL now that it is an ion
0	O ²⁻	1s ² 2s ² 2p ⁶	8
Na	Na⁺	1s ² 2s ² 2p ⁶	8
S			
К			
AI			
CI			
Xe	NA	NA	NA
Са			
F			
Br			
Ν			
Ar	NA	NA	NA
I			
Sr			

Write the ground state electron configuration for the following ions:

1)	O+		
2)	C-		
3)	F+		
4)	Ar⁺		
5)	in Q≉	at the configurations that you wrote #1 – are those ions that those atoms d want to make? Why or why not?	

Write the NOBLE GAS configuration for the following ions:

6) Cl ⁻	
7) P ³⁻	
8) Br	
9) Se ²⁻	
10) Na⁺	
11) Ba ²⁺	
12) Fe ³⁺	
13) Ag⁺	
14) Ni ²⁺	
15) Cr ³⁺	

Determine the number of unpaired electrons in the ground state of the following ions.

You can use an orbital diagram to help you, but you can also just use the periodic table!

16) F⁺	20) Describe why atoms like to make certain ions. Also describe the pattern on the
17) Sn ²⁺	periodic table that lets us find the preferred ion quickly!
18) Bi ³⁺	
19) Ar+	